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ac2poly

Convert autocorrelation sequence to prediction polynomial

Syntax

a = ac2poly(r)
[a,efinal] = ac2poly(r)
Description

a = ac2poly(r) finds the linear prediction FIR filter polynomial, a, corresponding to the
autocorrelation sequence r. a is the same length as r, and a(1) = 1. The polynomial represents the
coefficients of a prediction filter that outputs a signal with autocorrelation sequence approximately
equal to r.

[a,efinal] = ac2poly(r) returns the final prediction error, efinal, determined by running the
filter for length(r) steps.

Examples

Prediction Polynomial from Autocorrelation Sequence

Given an autocorrelation sequence, r, determine the equivalent linear prediction filter polynomial
and the final prediction error.

r = [5.0000 -1.5450 -3.9547 3.9331 1.4681 -4.7500];
[a,efinal] = ac2poly(r)
a = 1Ix6

1.0000 0.6147 0.9898 0.0004 0.0034 -0.0077
efinal = 0.1791
Tips
You can apply this function to real or complex data.
References
[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

See Also
ac2rc | poly2ac | rc2poly
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Introduced before R2006a
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ac2rc

Convert autocorrelation sequence to reflection coefficients

Syntax

[k, r0] = ac2rc(r)

Description

[k, r@] = ac2rc(r) finds the reflection coefficients, k, corresponding to the autocorrelation
sequence r. r0 contains the zero-lag autocorrelation. If r is a matrix where the columns are separate
channels of autocorrelation sequences, r@ contains the zero-lag autocorrelation coefficient for each
channel. These reflection coefficients can be used to specify the lattice prediction filter that produces
a sequence with approximately the same autocorrelation sequence as the given sequence r.

Tips
You can apply this function to real or complex data.

References

[1] Kay, Steven M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1988.

See Also
ac2poly | poly2rc | rc2ac

Introduced before R2006a



alignsignals

alignsignals

Align two signals by delaying earliest signal

Syntax

[Xa,Ya] = alignsignals(X,Y)

[Xa,Ya]l = alignsignals(X,Y,maxlag)

[Xa,Ya] = alignsignals(X,Y,maxlag, 'truncate')

[Xa,Ya,D] = alignsignals( )

Description

[Xa,Yal = alignsignals(X,Y) estimates the delay, D, between the two input signals, X and Y,
and returns the aligned signals, Xa and Ya.

« IfYis delayed with respect to X, then D is positive and X is delayed by D samples.

+ IfYis advanced with respect to X, then D is negative and Y is delayed by -D samples.

Delays in X or Y can be introduced by prepending zeros.

[Xa,Ya]l = alignsignals(X,Y,maxlag) uses maxlag as the maximum window size to find the
estimated delay, D, between the two input signals, X and Y. It returns the aligned signals, Xa and Ya.

[Xa,Yal = alignsignals(X,Y,maxlag, 'truncate') keeps the lengths of the aligned signals,
Xa and Ya, the same as those of the input signals, X and Y, respectively.

» If the estimated delay, D, is positive, then D zeros are prepended to X and the last D samples of X
are truncated.

» Ifthe estimated delay, D, is negative, then -D zeros are prepended to Y and the last -D samples of
Y are truncated.

Notes X and Y are row or column vectors of length Ly and Ly, respectively.

* If D = Ly, then Xa consists of Ly zeros. All samples of X are lost.
» If-D = Ly, then Ya consists of Ly zeros. All samples of Y are lost.

To avoid assigning a specific value to maxlag when using the 'truncate' option, set maxlagto [].

[Xa,Ya,D] = alignsignals( ) returns the estimated delay, D. This syntax can include any of
the input arguments used in previous syntaxes.

Examples

Align Two Signals Where the First Signal Lags by Three Samples

Align signal Y with respect to X by delaying it three samples.
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Create two signals, X and Y. X is exactly the same as Y, except X has three leading zeros and one
additional following zero. Align the two signals.

X
Y

[00012300];
[1230];

[Xa,Ya] = alignsignals(X,Y)

Xa = 1x8

0 0 0 1 2 3 0 0
Ya = 1Ix7

0 0 0 1 2 3 0

Align Two Signals Where the Second Signal Lags by Two Samples
Align signal X when Y is delayed with respect to X by two samples.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros. Align the two
signals.

[Xa,Ya,D] = alignsignals(X,Y,maxlag)

Xa = Ix5

0 0 1 2 3
Ya = Ix5

0 0 1 2 3
D=2

Align Two Signals Where the Second Signal Is Noisy
Align signal Y with respect to X, despite the fact that Y is a noisy signal.

Create two signals, X and Y. Y is exactly the same as X with some noise added to it. Align the two
signals.

[001230];
[0.02 0.12 1.08 2.21 2.95 -0.09];

[Xa,Ya,D] = alignsignals(X,Y)
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Xa = 1x6
0 0 1 2 3 0
Ya = 1Ix6

0.0200 0.1200 1.0800 2.2100 2.9500 -0.0900

D=20

You do not need to change the input signals to produce the output signals. The delay D is zero.

Align Two Signals Using the 'truncate’' Option
Invoke the 'truncate' option when calling the alignsignals function.

Create two signals, X and Y. Y is exactly the same as X, except Y has two leading zeros. Align the two
signals, applying the 'truncate' directive.

X
Y

[12 3];
0012 3];

[Xa,Ya,D] = alignsignals(X,Y,[], 'truncate")

Xa = 1Ix3

0 0 1
Ya = Ix5

0 0 1 2 3
D=2

Observe that the output signal Xa has a length of 3, the same length as input signal X.

In the case where using the 'truncate' option ends up truncating all the original data of X, a
warning is issued. To make alignsignals issue such a warning, run the following example.

Y=[0000123];
[Xa,Ya,D] = alignsignals(X,Y,[], 'truncate")

Warning: All original data in the first input X has been truncated because the length of X is sm:

Xa = 1Ix3
0 0 0
Ya = 1Ix7
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Align a Signal and a Periodic Repetition of It

Align signal Y with respect to X, despite the fact that Y is a periodic repetition of X. Return the
smallest possible delay.

Create two signals, X and Y. Y consists of two copies of the nonzero portion of X separated by zeros.
Align the two signals.

X
Y

o
——

06001230 0];

[Xa,Ya,D] = alignsignals(X,Y)

Xa = 1x4

0 1 2 3
Ya = Ix13

0 1 2 3 0 0 0 0 1 2 3 0 0
D= -1

Input Arguments

X — First input signal

vector of numeric values

First input signal, specified as a numeric vector of length LX.

Example: [1 2 3]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Complex Number Support: Yes

Y — Second input signal
vector of numeric values

Second input signal, specified as a numeric vector of length LY.

Example: [0 0 1 2 3]

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uintl6 | uint32 | uint64
Complex Number Support: Yes

maxlag — Maximum window size or lag
scalar integer | [1]



alignsignals

Maximum window size, or lag, specified as an integer-valued scalar. By default, maxlag is equal to
max(length(X),length(Y))-1.If maxlag is input as [], it is replaced by the default value. If
maxlag is negative, it is replaced by its absolute value. If max1lag is not integer-valued, or is
complex, Inf, or NaN, then alignsignals returns an error.

Example: 2
Data Types: single | double | int8 | intl6 | int32 | int64 | uint8 | uintl6 | uint32 | uint64

Output Arguments

Xa — Aligned first signal
vector of numeric values

Aligned first signal, returned as a numeric vector that is aligned with the second output argument,
Ya. If input argument X is a row vector, then Xa is also a row vector. If input argument X is a column
vector, then Xa is also a column vector. If you specify the 'truncate' option and the estimated delay
D is positive, then Xa is equivalent to the input signal X with D zeros prepended to it and its last D
samples truncated.

Ya — Aligned second signal
vector of numeric values

Aligned second signal, returned as a numeric vector that is aligned with the first output argument,
Xa. If input argument Y is a row vector, then Ya is also a row vector. If input argument Y is a column
vector, then Ya is also a column vector. If you specify the 'truncate' option and the estimated delay
D is negative, then Ya is equivalent to the input signal Y with -D zeros prepended to it and its last -D
samples truncated.

D — Estimated delay between input signals
scalar integer

Estimated delay between input signals, returned as a scalar integer. This integer represents the
number of samples by which the two input signals, X and Y are offset.

+ IfYis delayed with respect to X, then D is positive and X is delayed by D samples.

« IfYis advanced with respect to X, then D is negative and Y is delayed by -D samples.

* IfXandY are already aligned, then D is zero and neither X nor Y are delayed.

If you specify a value for the input argument maxlag, then D must be less than or equal to maxlag.

Algorithms

* You can find the theory on delay estimation in the specification of the finddelay function (see
“Algorithms” on page 1-690).

* The alignsignals function uses the estimated delay D to delay the earliest signal such that the
two signals have the same starting point.

» As specified for the finddelay function, the pair of signals need not be exact delayed copies of
each other. However, the signals can be successfully aligned only if there is sufficient correlation
between them. For more information on estimating covariance and correlation functions, see [1].

» Ifyour signals have features such as pulses or transitions, you can align them more effectively
using measurement functions instead of correlation. For an example, see “Align Two Bilevel
Waveforms” on page 1-1727.
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References

[1] Orfanidis, Sophocles J. Optimum Signal Processing. An Introduction. 2nd Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1996.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
dtw | edr | finddelay | findsignal | xcorr
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arburg

Autoregressive all-pole model parameters — Burg’s method

Syntax

a = arburg(x,p)
[a,e,rc] = arburg(x,p)
Description

a = arburg(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x.

[a,e,rc] = arburg(x,p) also returns the estimated variance, e, of the white noise input and the
reflection coefficients, rc.

Examples

Parameter Estimation Using Burg's Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use Burg's method to
estimate the coefficients.

rng default

A

[1 -2.7607 3.8106 -2.6535 0.9238];

y filter(1,A,0.2*randn(1024,1));
arcoeffs = arburg(y,4)
arcoeffs = 1Ix5

1.0000 -2.7743 3.8408 -2.6843 0.9360

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the Burg-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(1l,nrealiz)+0.5;

randnoise randn(1024,nrealiz);
noisevar = zeros(l,nrealiz);

for k l:nrealiz
y filter(1,A,noisestdz(k) * randnoise(:,k));
[arcoeffs,noisevar(k)] = arburg(y,4);

end
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plot(noisestdz.”2,noisevar, '*")
title('Noise Variance')
xLlabel('Input"')
ylabel('Estimated")

Noise Variance
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Input

Repeat the procedure using the function's multichannel syntax.
Y = filter(1,A,noisestdz.*randnoise);
[coeffs,variances] = arburg(Y,4);

hold on
plot(noisestdz.”2,variances, '0")
hold off

legend('Single channel loop', 'Multichannel', 'Location', 'best")
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Input Arguments

X — Input array
vector | matrix

Input array, specified as a vector or matrix.

Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.

Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of X.

Data Types: single | double

Output Arguments

a — Normalized autoregressive parameters
row vector | matrix
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Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(2),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

rc — Reflection coefficients
column vector | matrix

Reflection coefficients, returned as a column vector or matrix. If x is a matrix, then each column of rc
corresponds to a column of X. rc has p rows.

More About

AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input.

The weights on the p past outputs minimize the mean squared prediction error of the autoregression.
If y(n) is the current value of the output and x(n) is a zero mean white noise input, the AR(p) model is:

y(n) + kila(k)y(n —-k)=x(n).

Reflection Coefficients

The reflection coefficients are the partial autocorrelation coefficients scaled by -1. The reflection
coefficients indicate the time dependence between y(n) and y(n - k) after subtracting the prediction
based on the intervening k - 1 time steps.

Algorithms

Burg's method estimates the reflection coefficients and uses the reflection coefficients to estimate the
AR parameters recursively. You can find the recursion and lattice filter relations describing the
update of the forward and backward prediction errors in [1].

References

[1] Kay, Steven M. Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ:
Prentice Hall, 1988.

See Also
arcov | armcov | aryule | levinson | 1pc

Topics
“Parametric Modeling”
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Introduced before R2006a
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arcov

Autoregressive all-pole model parameters — covariance method

Syntax

a = arcov(x,p)
[a,e] = arcov(x,p)
Description

a = arcov(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x, where x is assumed to be the output of an AR system driven by white
noise. This method minimizes the forward prediction error in the least-squares sense.

[a,e] = arcov(x,p) also returns the estimated variance, e, of the white noise input.

Examples

Parameter Estimation Using the Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the covariance method
to estimate the coefficients.

rng default

A

[1 -2.7607 3.8106 -2.6535 0.9238];

y filter(1,A,0.2*randn(1024,1));
arcoeffs = arcov(y,4)
arcoeffs = 1Ix5

1.0000 -2.7746 3.8419 -2.6857 0.9367

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the covariance-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(1l,nrealiz)+0.5;

randnoise randn(1024,nrealiz);
noisevar = zeros(l,nrealiz);

for k l:nrealiz
y filter(1,A,noisestdz(k) * randnoise(:,k));
[arcoeffs,noisevar(k)] = arcov(y,4);

end



arcov

plot(noisestdz.”2,noisevar, '*")
title('Noise Variance')
xLlabel('Input"')
ylabel('Estimated")
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Repeat the procedure using the function's multichannel syntax.
Y = filter(1,A,noisestdz.*randnoise);
[coeffs,variances] = arcov(Y,4);

hold on
plot(noisestdz.”2,variances, '0")
hold off

legend('Single channel loop', 'Multichannel', 'Location', "best")
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Input Arguments

X — Input array
vector | matrix

Input array, specified as a vector or matrix.

Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.

Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of X.

Data Types: single | double

Output Arguments

a — Normalized autoregressive parameters
row vector | matrix
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Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(2),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input. The weights on the p past outputs minimize the mean squared prediction error of
the autoregression.

Let y(n) be a wide-sense stationary random process obtained by filtering white noise of variance e
with the system function A(2). If P,(e”) is the power spectral density of y(n), then

(ej“’) — e _ e

P A(el® 2 p
[ ‘1+ > a(k)e™ Ik
k=1

y

5 -
Because the covariance method characterizes the input data using an all-pole model, the correct

choice of the model order, p, is important.

See Also
arburg | armcov | aryule | lpc | pcov | prony

Introduced before R2006a
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armcov

Autoregressive all-pole model parameters — modified covariance method

Syntax

a = armcov(x,p)
[a,e] = armcov(x,p)
Description

a = armcov(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x. x is assumed to be the output of an AR system driven by white noise.
This method minimizes the forward and backward prediction errors in the least-squares sense

[a,e] = armcov(x,p) also returns the estimated variance, e, of the white noise input.

Examples

Parameter Estimation Using the Modified Covariance Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the modified
covariance method to estimate the coefficients.

rng default

A

[1 -2.7607 3.8106 -2.6535 0.9238];

y filter(1,A,0.2*randn(1024,1));
arcoeffs = armcov(y,4)
arcoeffs = 1Ix5

1.0000 -2.7741 3.8404 -2.6841 0.9360

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the modified-covariance-estimated variances to the actual values.

nrealiz = 50;

noisestdz = rand(1l,nrealiz)+0.5;

randnoise randn(1024,nrealiz);
noisevar = zeros(l,nrealiz);

for k l:nrealiz
y filter(1,A,noisestdz(k) * randnoise(:,k));
[arcoeffs,noisevar(k)] = armcov(y,4);

end
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plot(noisestdz.”2,noisevar, '*")
title('Noise Variance')
xLlabel('Input"')
ylabel('Estimated")
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Input

Repeat the procedure using the function's multichannel syntax.
Y = filter(1,A,noisestdz.*randnoise);
[coeffs,variances] = armcov(Y,4);

hold on
plot(noisestdz.”2,variances, '0")
hold off

legend('Single channel loop', 'Multichannel', 'Location', "best")
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Input Arguments

X — Input array
vector | matrix

Input array, specified as a vector or matrix.

Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order
autoregressive process.

Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

Model order, specified as a positive integer scalar. p must be less than the number of elements or
rows of X.

Data Types: single | double

Output Arguments

a — Normalized autoregressive parameters
row vector | matrix
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Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(2),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input. The weights on the p past outputs minimize the mean squared prediction error of
the autoregression.

Let y(n) be a wide-sense stationary random process obtained by filtering white noise of variance e
with the system function A(2). If P,(e”) is the power spectral density of y(n), then

(ej“’) — e _ e

P A(el® 2 p
[ ‘1+ > a(k)e™ Ik
k=1

y

5 -
Because the modified covariance method characterizes the input data using an all-pole model, the

correct choice of the model order, p, is important.

See Also
arburg | arcov | aryule | lpc | pmcov | prony

Introduced before R2006a
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Autoregressive all-pole model parameters — Yule-Walker method

Syntax

a = aryule(x,p)
[a,e,rc] = aryule(x,p)
Description

a = aryule(x,p) returns the normalized autoregressive (AR) parameters corresponding to a model
of order p for the input array x.

[a,e,rc] = aryule(x,p) also returns the estimated variance, e, of the white noise input and the
reflection coefficients, rc.

Examples

Parameter Estimation Using the Yule-Walker Method

Use a vector of polynomial coefficients to generate an AR(4) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results. Use the Yule-Walker
method to estimate the coefficients.

rng default

A

[1 -2.7607 3.8106 -2.6535 0.9238];

y filter(1,A,0.2*randn(1024,1));
arcoeffs = aryule(y,4)
arcoeffs = 1Ix5

1.0000 -2.7262 3.7296 -2.5753 0.8927

Generate 50 realizations of the process, changing each time the variance of the input noise. Compare
the Yule-Walker-estimated variances to the actual values.

nrealiz = 50;
noisestdz = rand(1l,nrealiz)+0.5;

randnoise randn(1024,nrealiz);
noisevar = zeros(l,nrealiz);

for k l:nrealiz
y filter(1,A,noisestdz(k) * randnoise(:,k));
[arcoeffs,noisevar(k)] = aryule(y,4);

end
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plot(noisestdz.”2,noisevar, '*")
title('Noise Variance')
xLlabel('Input"')
ylabel('Estimated")

Noise Variance
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Input
Repeat the procedure using the function's multichannel syntax.
Y = filter(1,A,noisestdz.*randnoise);
[coeffs,variances] = aryule(Y,4);
hold on
plot(noisestdz.”2,variances, '0")
hold off
legend('Single channel loop', 'Multichannel', 'Location', 'best")
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Estimate Model order Using Decay of Reflection Coefficients

Use a vector of polynomial coefficients to generate an AR(2) process by filtering 1024 samples of
white noise. Reset the random number generator for reproducible results.

rng default

y = filter(1,[1 -0.75 0.5],0.2*randn(1024,1));

Use the Yule-Walker method to fit an AR(10) model to the process. Output and plot the reflection
coefficients. Only the first two coefficients lie outside the 95% confidence bounds, indicating that an
AR(10) model significantly overestimates the time dependence in the data. See “AR Order Selection
with Partial Autocorrelation Sequence” for more details.

[ar,nvar,rc] = aryule(y,10);

stem(rc)

xlim([0 111)

conf95 = sqrt(2)*erfinv(0.95)/sqrt(1024);
[X,Y] = ndgrid(xlim,conf95*[-1 11);

hold on

plot(X,Y,"'--r")

hold off

title('Reflection Coefficients')
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Reflection Coefficients

0.6 T T T

0.2

Input Arguments

X — Input array
vector | matrix

Input array, specified as a vector or matrix.

Example: filter(1,[1 -0.75 0.5],0.2*randn(1024,1)) specifies a second-order

autoregressive process.

Data Types: single | double
Complex Number Support: Yes

p — Model order
positive integer scalar

10

11

Model order, specified as a positive integer scalar. p must be less than the number of elements or

rows of x.
Data Types: single | double
Output Arguments

a — Normalized autoregressive parameters
row vector | matrix
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Normalized autoregressive parameters, returned as a vector or matrix. If x is a matrix, then each row
of a corresponds to a column of x. a has p + 1 columns and contains the AR system parameters, A(2),
in descending powers of z.

e — White noise input variance
scalar | row vector

White noise input variance, returned as a scalar or row vector. If x is a matrix, then each element of e
corresponds to a column of x.

rc — Reflection coefficients
column vector | matrix

Reflection coefficients, returned as a column vector or matrix. If X is a matrix, then each column of rc
corresponds to a column of Xx. rc has p rows.

More About
AR(p) Model

In an AR model of order p, the current output is a linear combination of the past p outputs plus a
white noise input.

The weights on the p past outputs minimize the mean squared prediction error of the autoregression.
If y(n) is the current value of the output and x(n) is a zero-mean white noise input, the AR(p) model is

N\

Oa(k)y(n —k) =x(n).

k
Reflection Coefficients
The reflection coefficients are the partial autocorrelation coefficients scaled by -1.

The reflection coefficients indicate the time dependence between y(n) and y(n - k) after subtracting
the prediction based on the intervening k - 1 time steps.

Algorithms

aryule uses the Levinson-Durbin recursion on the biased estimate of the sample autocorrelation
sequence to compute the parameters.

References

[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York: John Wiley &
Sons, 1996.

See Also
arburg | arcov | armcov | levinson | 1pc

Topics
“Parametric Modeling”
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Introduced before R2006a
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Bandpass-filter signals

Syntax

y = bandpass(x,wpass)

y = bandpass(x, fpass, fs)

y = bandpass(xt, fpass)

y = bandpass(___ ,Name,Value)

[y,d] = bandpass( )
bandpass( )

Description

y = bandpass(x,wpass) filters the input signal x using a bandpass filter with a passband
frequency range specified by the two-element vector wpass and expressed in normalized units of
rad/sample. bandpass uses a minimum-order filter with a stopband attenuation of 60 dB and
compensates for the delay introduced by the filter. If x is a matrix, the function filters each column
independently.

y = bandpass(x, fpass, fs) specifies that x has been sampled at a rate of fs hertz. The two-
element vector fpass specifies the passband frequency range of the filter in hertz.

y = bandpass(xt, fpass) bandpass-filters the data in timetable xt using a filter with a passband
frequency range specified in hertz by the two-element vector fpass. The function independently
filters all variables in the timetable and all columns inside each variable.

y = bandpass( ,Name, Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the transition band
steepness, and the type of impulse response of the filter.

[y,d] = bandpass( ) alsoreturns the digitalFilter object d used to filter the input.

bandpass( ) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Bandpass Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains three tones, one at 50 Hz, another
at 150 Hz, and a third at 250 Hz. The high-frequency and low-frequency tones both have twice the
amplitude of the intermediate tone. The signal is embedded in Gaussian white noise of variance
1/100.

fs = 1le3;
t =0:1/fs:1;
X = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;
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Bandpass-filter the signal to remove the low-frequency and high-frequency tones. Specify passbhand
frequencies of 100 Hz and 200 Hz. Display the original and filtered signals, and also their spectra.

bandpass(x,

[160 200],fs)

Bandpass Filtering (Fpass = [100 200] Hz)

Bandpass F

Implement a

50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

iltering of Musical Signal

basic digital music synthesizer and use it to play a traditional song. Specify a sample

rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t =0:1/Fs:

[0 130.
[0 261.
[0 523.
ote = @(f,

>SS o3~
LI 1|

w w

[
[

1:

2
05

0.3-1/fs;

81 146.83 164.81 174.61 196.00 220 246.941];
63 293.66 329.63 349.23 392.00 440 493.88];
25 587.33 659.25 698.46 783.99 880 987.771;
g) [1 1 1]*sin(2*pi*[1(g) m(g) h(f)]"'.*t);

23330222035503212333
03033202230553050333

ength(mel)
song note(mel(kj),acc(kj)) zeros(1l,0.01*fs)];

—_—
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song = song/(max(abs(song))+0.1);
% To hear, type sound(song,fs)

pspectrum(song, fs, 'spectrogram', 'TimeResolution',0.31,
'OverlapPercent',0, 'MinThreshold', -60)

Fres = 8.2798 Hz, Tres = 310 ms

Frequency (kHz)
Power (dB}

0 1 2 3 4 5 6 7 8
Time (s)

Bandpass-filter the signal to separate the middle register from the other two. Specify passbhand
frequencies of 230 Hz and 450 Hz. Plot the original and filtered signals in the time and frequency
domains.

pong = bandpass(song, [230 450],fs);
% To hear, type sound(pong,fs)

bandpass(song, [230 450],fs)
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Frequency (kHz)

Plot the spectrogram of the middle register.

figure

pspectrum(pong, fs, 'spectrogram', 'TimeResolution',0.31,
'OverlapPercent',0, 'MinThreshold"', -60)
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Fres = 8.2798 Hz, Tres =310 ms

Freguency (kHz)
Power (dB}

Bandpass Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response bandpass filter with a
passband width of 100 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;

X = randn(20000,1);

[yl,d1l] = bandpass(x,[ 50 150],fs, 'ImpulseResponse','iir', 'Steepness',0.5);
[y2,d2] = bandpass(x,[200 300],fs, 'ImpulseResponse','iir', 'Steepness',0.8);
[y3,d3] = bandpass(x,[350 450],fs, 'ImpulseResponse','iir', 'Steepness’, 5),

pspectrum([yl y2 y3],fs)
legend('Steepness = 0.5', 'Steepness = 0.8', 'Steepness = 0.95',
'Location', 'south')
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Fres = 976.801 mHz
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Compute and plot the frequency responses of the filters.
[h1,f] = freqz(dl,1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);
plot(f,mag2db(abs([hl h2 h3])))
legend('Steepness = 0.5', 'Steepness = 0.8', 'Steepness = 0.95',

'Location', 'south')
ylim([-100 10])
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Make the filters asymmetric by specifying different values of steepness at the lower and higher
passband frequencies.

[yl,d1] = bandpass(x,[ 50 150],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8]);
[y2,d2] = bandpass(x,[200 300],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8]);
[y3,d3] = bandpass(x,[350 450],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8]);

pspectrum([yl y2 y3],fs)
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Compute and plot the frequency responses of the filters.

[h1,f] = freqz(dl, 1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([hl h2 h3])))
ylim([-100 10])
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Input Arguments

x — Input signal

vector | matrix

Input signal, specified as a vector or matrix.

Example: sin(2*pi*(0:127)/16)+randn(1,128) /100 specifies a noisy sinusoid

Example: [2 1].*sin(2*pi*(0:127)"'./[16 64]) specifies a two-channel sinusoid.

Data Types: single | double
Complex Number Support: Yes

wpass — Normalized passband frequency range
two-element vector with elements in (0, 1)

Normalized passband frequency range, specified as a two-element vector with elements in the
interval (0, 1).

fpass — Passband frequency range
two-element vector with elements in (0, fs/2)

Passband frequency range, specified as a two-element vector with elements in the interval (0, fs/2).
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fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.

Example: timetable(seconds(0:4)',randn(5,1),randn(5,2)) contains a single-channel
random signal and a two-channel random signal, sampled at 1 Hz for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'ImpulseResponse', 'iir', 'StopbandAttenuation', 30 filters the input using a
minimum-order IIR filter that attenuates by 30 dB the frequencies smaller than fpass (1) and the
frequencies larger than fpass(2).

ImpulseResponse — Type of impulse response
'auto' (default) | 'fir' | 'iir’

Type of impulse response of the filter, specified as the comma-separated pair consisting of
"ImpulseResponse’ and 'fir', 'iir', or 'auto’.

 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

e 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

* ‘'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

* Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

» If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

+ If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.
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+ Filter the signal and compensate for the delay.

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1) | two-element vector with elements in the interval [0.5,
9]

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar or two-element vector with elements in the interval [0.5, 1). As the steepness increases, the
filter response approaches the ideal bandpass response, but the resulting filter length and the
computational cost of the filtering operation also increase. See “Bandpass Filter Steepness” on page
1-40 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar in dB.

Output Arguments

y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Bandpass filter
digitalFilter object

Bandpass filter used in the filtering operation, returned as a digitalFilter object.

* Use filter(d,x) to filter a signal x using d.
* Use FVTool to visualize the filter response.
* Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About

Bandpass Filter Steepness

The 'Steepness' argument controls the width of a filter's transition regions. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

 The Nyquist frequency, fuyquist iS the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fyyquist iS 1 (X rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

* The lower and upper stopband frequencies of the filter, f,,/*"" and fy,,"***", are the frequencies
below which and above which the attenuation is equal to or greater than the value specified using
'StopbandAttenuation’.

* The lower transition width of the filter, Wover, is fpasslower - f, lower where fpass!over is the first
element of fpass.
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 The upper transition width of the filter, W'PPer, is f,  UPPer — fpassUPPer, where fpassUPPer is the
second element of fpass.

* Most nonideal filters also attenuate the input signal across the passband. The maximum value of

this frequency-dependent attenuation is called the passband ripple. Every filter used by bandpass
has a passband ripple of 0.1 dB.
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To control the width of the transition bands, you can specify 'Steepness' as either a two-element
vector, [slover,supper] or a scalar. When you specify 'Steepness' as a vector, the function:

* Computes the lower transition width as
Vvlower = (1 _ Slower) X fpasslower‘

*  When the first element of 'Steepness' is equal to 0.5, the transition width is 50% of
fpasslower,

* As the first element of 'Steepness' approaches 1, the transition width becomes progressively
narrower until it reaches a minimum value of 1% of fpasslower,

* Computes the upper transition width as
wupper = (1 B supper) X (fNyquist - fpassupper)'
*  When the second element of 'Steepness' is equal to 0.5, the transition width is 50% of
(f Nyquist ~ fpas supper)_

* Asthe second element of 'Steepness' approaches 1, the transition width becomes
progressively narrower until it reaches a minimum value of 1% of (fyyquist - fpass"PPer).
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When you specify 'Steepness' as a scalar, the function designs a filter with equal lower and upper
transition widths. The default value of 'Steepness' is 0.85.

See Also

Apps
Signal Analyzer

Functions
bandstop | designfilt | filter | firl | highpass | Lowpass

Introduced in R2018a
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Band power

Syntax

p = bandpower(x)

p = bandpower(x,fs, freqrange)

p = bandpower(pxx,f, 'psd')

p = bandpower(pxx,f,freqrange, 'psd')

Description

p = bandpower(x) returns the average power in the input signal, x. If x is a matrix, then
bandpower computes the average power in each column independently.

p = bandpower(x, fs, freqrange) returns the average power in the frequency range,
fregrange, specified as a two-element vector. You must input the sample rate, fs, to return the
power in a specified frequency range. bandpower uses a modified periodogram to determine the
average power in freqrange.

p = bandpower(pxx,f, 'psd') returns the average power computed by integrating the power
spectral density (PSD) estimate, pxx. The integral is approximated by the rectangle method. The
input, f, is a vector of frequencies corresponding to the PSD estimates in pxx. The 'psd' option
indicates that the input is a PSD estimate and not time series data.

p = bandpower(pxx,f,freqrange, 'psd') returns the average power contained in the frequency
interval, freqrange. If the frequencies in freqrange do not match values in f, the closest values
are used. The average power is computed by integrating the power spectral density (PSD) estimate,
pxx. The integral is approximated by the rectangle method. The 'psd' option indicates the input is a
PSD estimate and not time series data.

Examples

Comparison with Euclidean Norm

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Determine the average power and compare it against the ¢ norm.

t =0:0.001:1-0.001;

X = CO0S(2*pi*100*t)+randn(size(t));
p = bandpower(x)

p = 1.5264

12norm = norm(x,2)”2/numel(x)

12norm = 1.5264
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Percentage of Total Power in Frequency Interval
Determine the percentage of the total power in a specified frequency interval.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Determine the percentage of the total power in the frequency interval
between 50 Hz and 150 Hz. Reset the random number generator for reproducible results.

rng(‘'default')

t
X

0:0.001:1-0.001;
Ccos (2*pi*100*t)+randn(size(t));

pband = bandpower(x,1000,[50 1501]);
ptot = bandpower(x,1000,[0 500]);
per _power = 100*(pband/ptot)

per power = 51.9591

Periodogram Input

Determine the average power by first computing a PSD estimate using the periodogram. Input the
PSD estimate to bandpower.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Obtain the periodogram and use the 'psd' flag to compute the average
power using the PSD estimate. Compare the result against the average power computed in the time
domain.

t =0:0.001:1-0.001;
Fs = 1000;
X = C0S(2*pi*100*t)+randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
p = bandpower(Pxx,F, 'psd")

p = 1.5264
avpow = norm(x,2)"2/numel(x)

avpow = 1.5264

Percentage of Power in Frequency Band (Periodogram)

Determine the percentage of the total power in a specified frequency interval using the periodogram
as the input.

Create a signal consisting of a 100 Hz sine wave in additive N(0,1) white Gaussian noise. The
sampling frequency is 1 kHz. Obtain the periodogram and corresponding frequency vector. Using the
PSD estimate, determine the percentage of the total power in the frequency interval between 50 Hz
and 150 Hz.
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Fs = 1000;
t 0:1/Fs:1-0.001;
X Ccos(2*pi*100*t)+randn(size(t));

[Pxx,F] = periodogram(x,rectwin(length(x)),length(x),Fs);
pBand = bandpower(Pxx,F,[50 150], 'psd');

pTot = bandpower(Pxx,F, 'psd');

per power = 100*(pBand/pTot)

per power = 49.1798

Average Power of a Multichannel Signal

Create a multichannel signal consisting of three sinusoids in additive N(0,1) white Gaussian noise.
The sinusoids' frequencies are 100 Hz, 200 Hz, and 300 Hz. The sampling frequency is 1 kHz, and the
signal has a duration of 1 s.

Fs = 1000;

t =0:1/Fs:1-1/Fs;

f = [100;200;300];

X = cos(2*pi*f*t)'+randn(length(t),3);

Determine the average power of the signal and compare it to the £y norm.
p = bandpower(x)
p = 1x3

1.5264 1.5382 1.4717

12norm = dot(x,x)/length(x)
12norm = 1Ix3

1.5264 1.5382 1.4717

Input Arguments

X — Time series input
vector | matrix

Input time series data, specified as a row or column vector or as a matrix. If x is a matrix, then its
columns are treated as independent channels.

Example: cos(pi/4*(0:159)) '+randn(160,1) is a single-channel column-vector signal.
Example: cos(pi./[4;2]*(0:159)) '+randn(160,2) is a two-channel noisy sinusoid.

Data Types: double | single
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Complex Number Support: Yes

fs — Sampling frequency

1 (default) | positive scalar

Sampling frequency for the input time series data, specified as a positive scalar.
Data Types: double | single

freqrange — Frequency range for band power computation
two-element real-valued row or column vector

Frequency range for the band power computation, specified as a two-element real-valued row or
column vector. If the input signal, x, contains N samples, freqrange must be within the following
intervals:

* [0, fs/2]if x is real-valued and N is even

¢ [0, (N -1)fs/(2N)] if x is real-valued and N is odd

* [-(N -2)fs/(2N), fs/2]if x is complex-valued and N is even

e [-(N-1)Tfs/(2N), (N - 1)fs/(2N)] if x is complex-valued and N is odd

Data Types: double | single

pxx — PSD estimates
column vector | matrix

One- or two-sided PSD estimates, specified as a real-valued column vector or matrix with nonnegative
elements.

The power spectral density must be expressed in linear units, not decibels. Use db2pow to convert
decibel values to power values.

Example: [pxx,f] = periodogram(cos(pi./[4;2]1*(0:159)) '+randn(160,2)) specifies the
periodogram PSD estimate of a noisy two-channel sinusoid sampled at 2 Hz and the frequencies at
which it is computed.

Data Types: double | single

f — Frequency vector for PSD estimates
column vector with real-valued elements

Frequency vector, specified as a column vector. The frequency vector, f, contains the frequencies
corresponding to the PSD estimates in pxx.

Data Types: double | single

Output Arguments

p — Average band power
nonnegative scalar

Average band power, returned as a nonnegative scalar.

Data Types: double | single
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References

[1] Hayes, Monson H. Statistical Digital Signal Processing and Modeling. New York: John Wiley &
Sons, 1996.

[2] Stoica, Petre, and Randolph Moses. Spectral Analysis of Signals. Upper Saddle River, NJ: Prentice
Hall, 2005.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Input argument 'psd’, when specified, must be a compile time constant.

See Also
periodogram | sfdr

Introduced in R2013a
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bandstop

Bandstop-filter signals

Syntax

y = bandstop(x,wpass)

y = bandstop(x, fpass, fs)

y = bandstop(xt, fpass)

y = bandstop(___ ,Name,Value)

[y,d] = bandstop( )
bandstop( )

Description

y = bandstop(x,wpass) filters the input signal x using a bandstop filter with a stopband
frequency range specified by the two-element vector wpass and expressed in normalized units of
rad/sample. bandstop uses a minimum-order filter with a stopband attenuation of 60 dB and
compensates for the delay introduced by the filter. If x is a matrix, the function filters each column
independently.

y = bandstop(x, fpass, fs) specifies that x has been sampled at a rate of fs hertz. The two-
element vector fpass specifies the stopband frequency range of the filter in hertz.

y = bandstop(xt, fpass) bandstop-filters the data in timetable xt using a filter with a stopband
frequency range specified in hertz by the two-element vector fpass. The function independently
filters all variables in the timetable and all columns inside each variable.

y = bandstop( ,Name, Value) specifies additional options for any of the previous syntaxes
using name-value pair arguments. You can change the stopband attenuation, the transition band
steepness, and the type of impulse response of the filter.

[y,d] = bandstop( ) alsoreturns the digitalFilter object d used to filter the input.

bandstop( ) with no output arguments plots the input signal and overlays the filtered signal.

Examples

Bandstop Filtering of Tones

Create a signal sampled at 1 kHz for 1 second. The signal contains three tones, one at 50 Hz, another
at 150 Hz, and a third at 250 Hz. The high-frequency and low-frequency tones both have twice the
amplitude of the intermediate tone. The signal is embedded in Gaussian white noise of variance
1/100.

fs = 1le3;
t =0:1/fs:1;
X = [2 1 2]*sin(2*pi*[50 150 250]'.*t) + randn(size(t))/10;
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Bandstop-filter the signal to remove the medium-frequency tone. Specify passband frequencies of 100
Hz and 200 Hz. Display the original and filtered signals, and also their spectra.

bandstop(x,[100 200],fs)

Bandstop Filtering (Fpass = [100 200] Hz)
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Bandstop Filtering of Musical Signal

Implement a basic digital music synthesizer and use it to play a traditional song. Specify a sample
rate of 2 kHz. Plot the spectrogram of the song.

fs = 2e3;
t =0:1/fs:0.3-1/Fs;

[0 130.81 146.83 164.81 174.61 196.00 220 246.94];
[0 261.63 293.66 329.63 349.23 392.00 440 493.88];
[0 523.25 587.33 659.25 698.46 783.99 880 987.77];
ote = @(f,g) [1 1 1]*sin(2*pi*[1(g) m(g) h(f)]'.*t);
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ength(mel)

1:
= [song note(mel(kj),acc(kj)) zeros(1l,0.01*fs)];
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song = song/(max(abs(song))+0.1);
% To hear, type sound(song,fs)

pspectrum(song, fs, 'spectrogram', 'TimeResolution',0.31,
'OverlapPercent',0, 'MinThreshold', -60)

Frequency (kHz)
Power (dB}

0 1 2 3 4 5 6 7 8
Time (s)

Bandstop-filter the signal to separate the middle register from the other two. Specify passband
frequencies of 230 Hz and 450 Hz. Plot the original and filtered signals in the time and frequency
domains.

bong = bandstop(song, [230 450],fs);
% To hear, type sound(bong,fs)

bandstop(song, [230 450],fs)
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Plot the spectrogram of the song without the middle register.

figure

pspectrum(bong, fs, 'spectrogram', 'TimeResolution',0.31,
'OverlapPercent',0, 'MinThreshold"', -60)
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Fres = 8.2798 Hz, Tres =310 ms

Freguency (kHz)
Power (dB}

Bandstop Filter Steepness

Filter white noise sampled at 1 kHz using an infinite impulse response bandstop filter with a
stopband width of 100 Hz. Use different steepness values. Plot the spectra of the filtered signals.

fs = 1000;

X = randn(20000,1);

[yl,d1l] = bandstop(x,[ 50 150],fs, 'ImpulseResponse','iir', 'Steepness',0.5);
[y2,d2] = bandstop(x,[200 300],fs, 'ImpulseResponse','iir', 'Steepness',0.8);
[y3,d3] = bandstop(x,[350 450],fs, 'ImpulseResponse','iir', 'Steepness’, 5),

pspectrum([yl y2 y3],fs)
legend('Steepness = 0.5', 'Steepness = 0.8', 'Steepness = 0.95',
'Location', 'north')
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Fres = 976.801 mHz
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Compute and plot the frequency responses of the filters.

[h1,f] = freqz(dl, 1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([hl h2 h3])))

legend('Steepness = 0.5', 'Steepness = 0.8', 'Steepness = 0.95',
'Location', 'north")

ylim([-120 20])
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Make the filters asymmetric by specifying different values of steepness at the lower and higher

passband frequencies.

[yl,d1l] = bandstop(x,[ 50 150],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8])
[y2,d2] = bandstop(x,[200 300],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8])
[y3,d3] = bandstop(x,[350 450],fs, 'ImpulseResponse','iir', 'Steepness',[0.5 0.8])

pspectrum([yl y2 y3],fs)
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Fres = 976.801 mHz
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Compute and plot the frequency responses of the filters.

[h1,f] = freqz(dl, 1024,fs);
[h2,~] = freqz(d2,1024,fs);
[h3,~] = freqz(d3,1024,fs);

plot(f,mag2db(abs([hl h2 h3])))
ylim([-120 20])
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Input Arguments

x — Input signal

vector | matrix

Input signal, specified as a vector or matrix.

Example: sin(2*pi*(0:127)/16)+randn(1,128) /100 specifies a noisy sinusoid
Example: [2 1].*sin(2*pi*(0:127)"'./[16 64]) specifies a two-channel sinusoid.
Data Types: single | double

Complex Number Support: Yes

wpass — Normalized stopband frequency range
two-element vector with elements in (0, 1)

Normalized stopband frequency range, specified as a two-element vector with elements in the
interval (0, 1).

fpass — Stopband frequency range
two-element vector with elements in (0, fs/2)

Stopband frequency range, specified as a two-element vector with elements in the interval (0, fs/2).
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fs — Sample rate
positive real scalar

Sample rate, specified as a positive real scalar.

xt — Input timetable
timetable

Input timetable. xt must contain increasing, finite, and equally spaced row times of type duration
in seconds.

If a timetable has missing or duplicate time points, you can fix it using the tips in “Clean Timetable
with Missing, Duplicate, or Nonuniform Times”.

Example: timetable(seconds(0:4)"',randn(5,1),randn(5,2)) contains a single-channel
random signal and a two-channel random signal, sampled at 1 Hz for 4 seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'ImpulseResponse', 'iir', 'StopbandAttenuation', 30 filters the input using a
minimum-order IIR filter that attenuates by 30 dB the frequencies from fpass(1) to fpass(2).

ImpulseResponse — Type of impulse response
‘auto’ (default) | 'fir' | 'iir’

Type of impulse response of the filter, specified as the comma-separated pair consisting of
"ImpulseResponse’ and 'fir', 'iir', or 'auto'.

o 'fir' — The function designs a minimum-order, linear-phase, finite impulse response (FIR) filter.
To compensate for the delay, the function appends to the input signal N/2 zeros, where N is the
filter order. The function then filters the signal and removes the first N/2 samples of the output.

In this case, the input signal must be at least twice as long as the filter that meets the
specifications.

 'iir' — The function designs a minimum-order infinite impulse response (IIR) filter and uses the
filtfilt function to perform zero-phase filtering and compensate for the filter delay.

If the signal is not at least three times as long as the filter that meets the specifications, the
function designs a filter with smaller order and thus smaller steepness.

* 'auto' — The function designs a minimum-order FIR filter if the input signal is long enough, and
a minimum-order IIR filter otherwise. Specifically, the function follows these steps:

e Compute the minimum order that an FIR filter must have to meet the specifications. If the
signal is at least twice as long as the required filter order, design and use that filter.

» If the signal is not long enough, compute the minimum order that an IIR filter must have to
meet the specifications. If the signal is at least three times as long as the required filter order,
design and use that filter.

+ If the signal is not long enough, truncate the order to one-third the signal length and design an
IIR filter of that order. The reduction in order comes at the expense of transition band
steepness.
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+ Filter the signal and compensate for the delay.

Steepness — Transition band steepness
0.85 (default) | scalar in the interval [0.5, 1) | two-element vector with elements in the interval [0.5,
1)

Transition band steepness, specified as the comma-separated pair consisting of 'Steepness' and a
scalar or two-element vector with elements in the interval [0.5, 1). As the steepness increases, the
filter response approaches the ideal bandstop response, but the resulting filter length and the
computational cost of the filtering operation also increase. See “Bandstop Filter Steepness” on page
1-58 for more information.

StopbandAttenuation — Filter stopband attenuation
60 (default) | positive scalar in dB

Filter stopband attenuation, specified as the comma-separated pair consisting of

'StopbandAttenuation' and a positive scalar in dB.

Output Arguments

y — Filtered signal
vector | matrix | timetable

Filtered signal, returned as a vector, a matrix, or a timetable with the same dimensions as the input.

d — Bandstop filter
digitalFilter object

Bandstop filter used in the filtering operation, returned as a digitalFilter object.

* Use filter(d,x) to filter a signal x using d.
* Use FVTool to visualize the filter response.
+ Use designfilt to edit or generate a digital filter based on frequency-response specifications.

More About

Bandstop Filter Steepness

The 'Steepness' argument controls the width of a filter's transition regions. The lower the
steepness, the wider the transition region. The higher the steepness, the narrower the transition
region.

To interpret the filter steepness, consider the following definitions:

 The Nyquist frequency, fyyquist 1S the highest frequency component of a signal that can be sampled
at a given rate without aliasing. fyyquist iS 1 (X rad/sample) when the input signal has no time
information, and fs/2 hertz when the input signal is a timetable or when you specify a sample
rate.

* The lower and upper stopband frequencies of the filter, f,,/°"" and fy,,"***", are the frequencies
between which the attenuation is equal to or greater than the value specified using
'StopbandAttenuation’.

The center of the stopband region is feenter = (f, lower + f;, uPper)/2,
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* The lower transition width of the filter, Wiover, is f, lower - fpasslower,
* The upper transition width of the filter, W'PPer, is fpassUiPrer - f, upper,

* Most nonideal filters also attenuate the input signal across the passband. The maximum value of
this frequency-dependent attenuation is called the passband ripple. Every filter used by bandstop
has a passband ripple of 0.1 dB.

\

NPAN Passband rippIeI VAN

| |
| |
| - |
| B |
| - |
pylower | yyupper o |
| =
| a |
| + |
| |
| 3 |
foenter = |
2 |
: =
(=] I
= |
L |
upper |
StDI:I fst{:p :
|

/ \ / f;.:-as*s.L"':'p"Er JNyquist
| |

To control the width of the transition bands, you can specify 'Steepness' as either a two-element
vector, [s'o"er,supper] or a scalar. When you specify 'Steepness' as a vector, the function:

* Computes the lower transition width as
Wiower — (1 _ Slower) X (]Q:enter _ fpasslower)'

* When the first element of 'Steepness' is equal to 0.5, the transition width is 50% of (feenter -
fpas leWE}I‘)‘

* As the first element of 'Steepness' approaches 1, the transition width becomes progressively
narrower until it reaches a minimum value of 1% of (feenter — fpasslower),

* Computes the upper transition width as
JWupper — (1 _ Supper) X (fpassupper _ ]Q:enter).
* When the second element of 'Steepness' is equal to 0.5, the transition width is 50% of
(fpassupper _ fcenter)_

* As the second element of 'Steepness' approaches 1, the transition width becomes
progressively narrower until it reaches a minimum value of 1% of (fpassupper - feenter)
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When you specify 'Steepness' as a scalar, the function designs a filter with equal lower and upper
transition widths. The default value of 'Steepness' is 0.85.

See Also

Apps
Signal Analyzer

Functions
bandpass | designfilt | filter | firl | highpass | Lowpass

Introduced in R2018a

1-60



barthannwin

barthannwin

Modified Bartlett-Hann window

Syntax

w = barthannwin(L)

Description

w = barthannwin(L) returns an L-point modified Bartlett-Hann window in the column vector w.
Like Bartlett, Hann, and Hamming windows, this window has a mainlobe at the origin and
asymptotically decaying sidelobes on both sides. It is a linear combination of weighted Bartlett and
Hann windows with near sidelobes lower than both Bartlett and Hann and with far sidelobes lower
than both Bartlett and Hamming windows. The mainlobe width of the modified Bartlett-Hann window
is not increased relative to either Bartlett or Hann window mainlobes.

Note The Hann window is also called the Hanning window.

Examples

Bartlett-Hann Window
Create a 64-point Bartlett-Hann window. Display the result using wvtool.

L = 64;
wvtool (barthannwin(L))
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Algorithms
The equation for computing the coefficients of a Modified Bartlett-Hanning window is
w(n) = 0.62 — O.48|(% - o.5)| +0.38c0s(2( 5 - 0.5))

where 0 = n < N and the window lengthis L = N + 1.

References

[1] Ha, Y. H., and ]. A. Pearce. “A New Window and Comparison to Standard Windows.” IEEE®
Transactions on Acoustics, Speech, and Signal Processing. Vol. 37, Number 2, 1999, pp. 298-
301.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, p. 468.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also

Apps
Window Designer

Functions
WVTool | bartlett | blackmanharris | bohmanwin | nuttallwin | parzenwin | rectwin |
triang

Introduced before R2006a
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bartlett

Bartlett window

Syntax

= bartlett(L)

Description

= bartlett(L) returns an L-point symmetric Bartlett window.

Examples

Bartlett Window

Create a 64-point Bartlett window. Display the result using wvtool.

L = 64;
bw = bartlett(L);
wvtool (bw)
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Input Arguments

L — Window length
positive integer

Window length, specified as a positive integer.

Data Types: single | double

Output Arguments

w — Bartlett window
column vector

Bartlett window, returned as a column vector.

Algorithms

The following equation generates the coefficients of a Bartlett window:

The window length L = N + 1.

The Bartlett window is very similar to a triangular window as returned by the triang function.
However, the Bartlett window always has zeros at the first and last samples, while the triangular
window is nonzero at those points. For odd values of L, the center L-2 points of bartlett(L) are
equivalent to triang(L-2).

Note If you specify a one-point window (L = 1), the value 1 is returned.

References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, pp.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Apps
Window Designer
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Functions
WVTool | barthannwin | blackmanharris | bohmanwin | nuttallwin | parzenwin | rectwin |
triang

Introduced before R2006a
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besselap

Bessel analog lowpass filter prototype

Syntax
[z,p,k] = besselap(n)

Description

[z,p,k] = besselap(n) returns the poles and gain of an order-n Bessel analog lowpass filter
prototype. n must be less than or equal to 25. The function returns the poles in the length n column
vector p and the gain in scalar k. z is an empty matrix because there are no zeros. The transfer
function is

k
(s = p())(s = p(2))(s — p(n))

besselap normalizes the poles and gain so that at low frequency and high frequency the Bessel
prototype is asymptotically equivalent to the Butterworth prototype of the same order [1]. The

magnitude of the filter is less than 1/,/2 at the unity cutoff frequency Q, = 1.

H(s) =

Analog Bessel filters are characterized by a group delay that is maximally flat at zero frequency and
almost constant throughout the passband. The group delay at zero frequency is
@n)1)Hn

2"n!

Examples

Frequency Response of an Analog Bessel Filter

Design a 6th-order Bessel analog lowpass filter. Display its magnitude and phase responses.

[z,p,k] = besselap(6); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs (num,den) % Frequency response of analog filter
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Algorithms

besselap finds the filter roots from a lookup table constructed using Symbolic Math Toolbox™
software.

References

[1] Rabiner, L. R., and B. Gold. Theory and Application of Digital Signal Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1975, pp. 228-230.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Filter order must be a constant. Expressions or variables are allowed if their values do not change.

See Also
besself | buttap | cheblap | cheb2ap | ellipap
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Introduced before R2006a
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besself

Bessel analog filter design

Syntax

[b,a] = besself(n,Wo)

[b,a] = besself(n,Wo, ftype)
[z,p,k] = besself( )
[A,B,C,D] = besself( )
Description

[b,a] = besself(n,Wo) returns the transfer function coefficients of an nth-order lowpass analog
Bessel filter, where Wo is the angular frequency up to which the filter's group delay is approximately
constant. Larger values of n produce a group delay that better approximates a constant up to Wo. The
besself function does not support the design of digital Bessel filters.

[b,a] = besself(n,Wo, ftype) designs a lowpass, highpass, bandpass, or bandstop analog
Bessel filter, depending on the value of ftype and the number of elements of Wo. The resulting
bandpass and bandstop designs are of order 2n.

[z,p,k] = besself( ) designs a lowpass, highpass, bandpass, or bandstop analog Bessel filter
and returns its zeros, poles, and gain. This syntax can include any of the input arguments in previous
syntaxes.

[A,B,C,D] = besself( ) designs a lowpass, highpass, bandpass, or bandstop analog Bessel
filter and returns the matrices that specify its state-space representation.

Examples

Frequency Response of Lowpass Bessel Filter

Design a fifth-order analog lowpass Bessel filter with approximately constant group delay up to 104
rad/second. Plot the magnitude and phase responses of the filter using freqs.

[b,a] = besself(5,10000);
fregs(b,a)
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Compute the group delay response of the filter as the derivative of the unwrapped phase response.
Plot the group delay to verify that it is approximately constant up to the cutoff frequency.

[h,w] = fregs(b,a,1000);

grpdel = diff(unwrap(angle(h)))./diff(w);

clf

semilogx(w(2:end),grpdel)
xlabel('Frequency (rad/s)"')
ylabel('Group delay (s)"')
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Bandpass Bessel Filter
Design a 12th-order bandpass Bessel filter with the passband ranging from 300 rad/s to 500 rad/s.

Compute the frequency response of the filter.
[b,a] = besself(6,[300 500], 'bandpass');

[h,w] = fregs(b,a);
Plot the magnitude and phase responses of the filter. Unwrap the phase response to avoid 180° and
360° jumps and convert it from radians to degrees. As expected, the phase response is close to linear

over the passband.
subplot(2,1,1)
plot(w,20*logl0(abs(h)))
ylabel('Magnitude")

subplot(2,1,2)
plot(w,180*unwrap(angle(h))/pi)

ylabel('Phase (degrees)')
xlabel('Frequency (rad/s)")
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Input Arguments

n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.

Data Types: double

Wo — Cutoff frequency
scalar | two-element vector

Cutoff frequency, specified as a scalar or a two-element vector. A cutoff frequency is an upper or
lower bound of the frequency range in which the filter's group delay is approximately constant. Cutoff
frequencies must be expressed in radians per second and can take on any positive value.

» IfWo is scalar, then besself designs a lowpass or highpass filter with cutoff frequency Wo.

» IfWo is a two-element vector [wl w2], where wl < w2, then besself designs a bandpass or
bandstop filter with lower cutoff frequency wl and higher cutoff frequency w2.

Data Types: double
ftype — Filter type
"low' | 'bandpass' | 'high' | 'stop"
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Filter type, specified as:

* 'low' — alowpass filter with cutoff frequency Wo. ' Llow' is the default for scalar Wo.
* 'high' — a highpass filter with cutoff frequency Wo.

* 'bandpass' — a bandpass filter of order 2n if Wo is a two-element vector. 'bandpass' is the
default when Wo has two elements.

* 'stop' — a bandstop filter of order 2n if Wo is a two-element vector.

Output Arguments

b, a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters. The transfer function is expressed in
terms of b and a as

H(s) = B6) _ b(1)s" + b(2)s" "1+ - +b(n+1)
A(s)  a(l)s"+a(2)s" "1+ +an+l)

Data Types: double

z, p, k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar. The transfer function is expressed in terms of z, p, and k as

(s — z(n))
(s —p(1)) (s —p(2))~(s—pn)) "

Data Types: double

H(s) = k (s —z(1)) (s — z(2))

A, B, C, D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then Aism x m, Bism x 1, Cis 1 X m, and D
is1 x 1.

The state-space matrices relate the state vector x, the input u, and the output y through

x=Ax+Bu
y=Cx+Du.

Data Types: double

Algorithms

besself designs analog Bessel filters, which are characterized by an almost constant group delay
across the entire passband, thus preserving the wave shape of filtered signals in the passband.
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Lowpass Bessel filters have a monotonically decreasing magnitude response, as do lowpass
Butterworth filters. Compared to the Butterworth, Chebyshev, and elliptic filters, the Bessel filter has
the slowest rolloff and requires the highest order to meet an attenuation specification.

For high-order filters, the state-space form is the most numerically accurate, followed by the zero-
pole-gain form. The transfer function coefficient form is the least accurate; numerical problems can
arise for filter orders as low as 15.

besself uses a four-step algorithm:

Find lowpass analog prototype poles, zeros, and gain using the besselap function.
Convert the poles, zeros, and gain into state-space form.

If required, use a state-space transformation to convert the lowpass filter into a bandpass,
highpass, or bandstop filter with the desired frequency constraints.

4 Convert the state-space filter back to transfer function or zero-pole-gain form, as required.

References

[1] Parks, Thomas W.,, and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987.

See Also
besselap | butter | chebyl | cheby2 | ellip

Introduced before R2006a
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Bilinear transformation method for analog-to-digital filter conversion

Syntax

[zd,pd,kd] = bilinear(z,p,k,fs)
[numd,dend] = bilinear(num,den, fs)
[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs)
[ 1 = bilinear(___ ,fp)

Description

[zd,pd,kd] = bilinear(z,p,k,fs) converts the s-domain transfer function in pole-zero form
specified by z, p, k and sample rate fs to a discrete equivalent.

[numd,dend] = bilinear(num,den, fs) converts the s-domain transfer function specified by
numerator num and denominator den to a discrete equivalent.

[Ad,Bd,Cd,Dd] = bilinear(A,B,C,D,fs) converts the continuous-time state-space system in
matrices A, B, C, and D to a discrete-time system.

[ 1 = bilinear(___ ,fp)uses parameter fp as "match" frequency to specify prewarping.

Examples

Bandpass IIR Filter Design Using Chebyshev Type | Analog Filter

Design the prototype for a 10th-order Chebyshev type I bandpass filter with 3 dB of ripple in the
passband. Convert it to state-space form.

[z,p,k] = cheblap(10,3);
[A,B,C,D] = zp2ss(z,p,k);
Create an analog filter with sample rate fs = 2 kHz, prewarped band edges u; and uy in rad/s,

bandwidth B,, = up — u; and center frequency W, = ,/uju; for use with 1p2bp. Specify the passband
edge frequencies as 100 Hz and 500 Hz.

Fs = 2e3;

ul = 2*Fs*tan(100*(2*pi/Fs)/2);
u2 = 2*Fs*tan(500*(2*pi/Fs)/2);
Bw = u2 - ul;

Wo = sqrt(ul*u2);

[At,Bt,Ct,Dt] = 1p2bp(A,B,C,D,Wo,Bw);
[b,a] = ss2tf(At,Bt,Ct,Dt);

Calculate the frequency response of the analog filter using freqs. Plot the magnitude response and
the prewarped frequency band edges.

[h,w] = freqgs(b,a);
plot(w,mag2db(abs(h)))
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hold on
ylim([-165 5])

[UL1,U2] = meshgrid([ul u2],ylim);

plot(Ul,U2)

legend('Magnitude response', 'Lower Passband Edge', 'Upper Passband Edge')

hold off
xlabel('Angular Frequency (rad/s)')

ylabel('Magnitude (dB)")

grid
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Use bilinear to create a digital bandpass filter with sample rate f and lower band edge 100 Hz.
Convert the digital filter from state-space form to transfer function form using ss2tf.

[Ad,Bd,Cd,Dd] = bilinear(At,Bt,Ct,Dt,Fs);
[bz,az] = ss2tf(Ad,Bd,Cd,Dd);

Use fvtool to plot the magnitude response of the digital filter.

fvtool(bz,az, 'Fs',Fs)
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Discrete-Time Representation of an Elliptic Filter
Design a 6th-order elliptic analog lowpass filter with 3 dB of ripple in the passband and a stopband 90

dB down. Set cutoff frequency f. = 20 Hz and sample rate fg = 200 Hz.

clear
Fc = 20;

Fs = 200;

[z,p,k] = ellip(6,3,90,2*pi*Fc,'s"');

[num,den] = zp2tf(z,p,k);
Calculate the magnitude response of the analog elliptic filter. Visualize the analog filter.

[h,w] = fregs(num,den);
plot(w/(2*pi),mag2db(abs(h)))

hold on
xlim([0 501])
meshgrid(Fc,[-120 0]);

[11,12] =
plot(11,12)

grid
legend('Magnitude response', 'Passband Edge')

xlabel('Frequency (Hz)"')
ylabel('Magnitude (dB)")
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Use bilinear to transform it to a discrete-time IIR filter. Set the match frequency as f, = 20 Hz.
[numd,dend] = bilinear(num,den,Fs,20);
Visualize the filter using fvtool

fvtool(numd,dend, 'Fs',Fs)
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Input Arguments

z — Zeros
column vector

Zeros of the s-domain transfer function, specified as a column vector.

p — Poles
column vector

Poles of the s-domain transfer function, specified as a column vector.
k — Gain

scalar

Gain of the s-domain transfer function, specified as a scalar.

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar.

num — Numerator coefficients
row vector

80
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Numerator coefficients of the analog transfer function, specified as a row vector.

den — Denominator coefficients
row vector

Denominator coefficients of the analog transfer function, specified as a row vector.

A — State matrix
matrix

State matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs and is
described by n state variables, then A is n-by-n.

Data Types: single | double

B — Input-to-state matrix
matrix

Input-to-state matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs
and is described by n state variables, then B is n-by-p.

Data Types: single | double

C — State-to-output matrix
matrix

State-to-output matrix in the s-domain, specified as a matrix. If the system has p inputs and q outputs
and is described by n state variables, then C is g-by-n.

Data Types: single | double

D — Feedthrough matrix
matrix

Feedthrough matrix in the s-domain, specified as a matrix. If the system has p inputs and g outputs
and is described by n state variables, then D is g-by-p.

Data Types: single | double

fp — match frequency
positive scalar

Match frequency, specified as a positive scalar.

Output Arguments

zd — Zeros
column vector

Zeros of the z-domain transfer function, specified as a column vector.

pd — Poles
column vector

Poles of the z-domain transfer function, specified as a column vector.
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kd — Gain
scalar

Gain of the z-domain transfer function, specified as a scalar.

numd — Numerator coefficients
row vector

Numerator coefficients of the digital transfer function, specified as a row vector.

dend — Denominator coefficients
row vector

Denominator coefficients of the digital transfer function, specified as a row vector.

Ad — State matrix
matrix

State matrix in the z-domain, returned as a matrix. If the system is described by n state variables,
then Ad is n-by-n.

Data Types: single | double

Bd — Input-to-state matrix
matrix

Input-to-state matrix in the z-domain, returned as a matrix. If the system is described by n state
variables, then Bd is n-by-1.

Data Types: single | double

Cd — State-to-output matrix
matrix

State-to-output matrix in the z-domain, returned as a matrix. If the system has q outputs and is
described by n state variables, then Cd is g-by-n.

Data Types: single | double

Dd — Feedthrough matrix
matrix

Feedthrough matrix in the z-domain, returned as a matrix. If the system has g outputs, then Dd is g-
by-1.

Data Types: single | double

Diagnostics

bilinear requires that the numerator order be no greater than the denominator order. If this is not
the case, bilinear displays

Numerator cannot be higher order than denominator.

For bilinear to distinguish between the zero-pole-gain and transfer function linear system formats,
the first two input parameters must be vectors with the same orientation in these cases. If this is not
the case, bilinear displays
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First two arguments must have the same orientation.

Algorithms

The bilinear transformation is a mathematical mapping of variables. In digital filtering, it is a
standard method of mapping the s or analog plane into the z or digital plane. It transforms analog
filters, designed using classical filter design techniques, into their discrete equivalents.

The bilinear transformation maps the s-plane into the z-plane by

= _ z-1
H(z) = H(s)|s = 2f it
This transformation maps the jQ axis (from Q = -» to +«) repeatedly around the unit circle (¢, from
w = -1n to m) by

_1 Q
=2t 1(—)
w an zfs

bilinear can accept an optional parameter Fp that specifies prewarping. fp, in hertz, indicates a
“match” frequency, that is, a frequency for which the frequency responses before and after mapping
match exactly. In prewarped mode, the bilinear transformation maps the s-plane into the z-plane with

= _ 2nfp z-1

fs

tan

With the prewarping option, bilinear maps the jQ axis (from Q = -» to +) repeatedly around the

unit circle (e, from w = -1 to m) by
Qtan(nf—p)
- fs
w=2tan” | ———+
2nfp

In prewarped mode, bilinear matches the frequency 2mf; (in radians per second) in the s-plane to
the normalized frequency 2mf,/f; (in radians per second) in the z-plane.

The bilinear function works with three different linear system representations: zero-pole-gain,
transfer function, and state-space form.

bilinear uses one of two algorithms depending on the format of the input linear system you supply.
One algorithm works on the zero-pole-gain format and the other on the state-space format. For
transfer function representations, bilinear converts to state-space form, performs the
transformation, and converts the resulting state-space system back to transfer function form.

Zero-Pole-Gain Algorithm
For a system in zero-pole-gain form, bilinear performs four steps:
1 If fp is present, it prewarps:

2*¥pi*fp;
fp/tan(fp/fs/2)

fp
fs

otherwise, fs = 2*fs.
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2 It strips any zeros at o« using

z = z(finite(z));
3 It transforms the zeros, poles, and gain using

pd = (1+p/fs)./(1-p/fs); % Do bilinear transformation
zd = (1+z/fs)./(1-z/fs);
kd = real(k*prod(fs-z)./prod(fs-p));

4 It adds extra zeros at -1 so the resulting system has equivalent numerator and denominator
order.

State-Space Algorithm

An analog system in state space form is given by

x = Ax + Bu
y=Cx+Du

. This system is converted to the discrete form using state-space equations as follows:
x[n + 1] = Agx[n] + Bguln],
ylnl = CgxIn] + Dguln].

To convert an analog system in state-space form, bilinear performs two steps:

1 If fpis present, let

A= Tp__
tan(mfp/fs) *

If fp is not present, let A=fs.
2 Compute Ad, Bd, Cd, and Dd in terms of A, B, C, and D using

Ag=(T+A%),

_ 1/
Bd—ﬁ(B/
_ 1 A~/
Cd—ﬁC(,

Dg=4C(B+D.
Transfer Function

For a system in transfer function form, bilinear converts an s-domain transfer function given by
num and den to a discrete equivalent. Row vectors num and den specify the coefficients of the
numerator and denominator, respectively, in descending powers of s. Let B(s) be the numerator
polynomial and A(s) be the denominator polynomial. The transfer function is:

B(s) B(1)s"+ -+ B(n)s+B(n+1)

(
A(S)  A(1)s™ + - + A(m)s + A(m + 1)

fs is the sample rate in hertz. bilinear returns the discrete equivalent in row vectors numd and

dend in descending powers of z (ascending powers of z'!). fp is the optional match frequency, in
hertz, for prewarping.



bilinear

References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999.

[2] Parks, Thomas W,, and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
impinvar | 1p2bp | 1p2bs | 1p2hp | 1p21p

Introduced before R2006a
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bitrevorder

Permute data into bit-reversed order

Syntax

y = bitrevorder(x)
[y,i] = bitrevorder(x)

Description
y = bitrevorder(x) returns the input data in bit-reversed order.

[y,i] = bitrevorder(x) also returns the bit-reversed indices, i, such thaty = x(i).

Examples

Vector in Bit-Reversed Order

Create a column vector and obtain its bit-reversed version. Verify by displaying the binary
representation explicitly.

X
\"

(0:15)"';
bitrevorder(x);

X _bin
v_bin

dec2bin(x);
dec2bin(v);

T = table(x,x _bin,v,v _bin)

T=16x4 table

X X _bin \% v_bin
0 0000 0 0000
1 0001 8 1000
2 0010 4 0100
3 0011 12 1100
4 0100 2 0010
5 0101 10 1010
6 0110 6 0110
7 0111 14 1110
8 1000 1 0001
9 1001 9 1001

10 1010 5 0101

11 1011 13 1101

12 1100 3 0011

13 1101 11 1011

14 1110 7 0111

15 1111 15 1111
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Input Arguments

X — Input data
vector | matrix

Input data, specified as a vector or matrix. The length or number of rows of x must be an integer
power of 2. If x is a matrix, the bit-reversal occurs on the first dimension of x with size greater than
1.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Bit-reversed data
vector | matrix

Bit-reversed data, returned as a vector or matrix. y is the same size as x.

i — Bit-reversed indices
vector | matrix

Bit-reversed indices, returned as a vector or matrix such that y = x(i). MATLAB® matrices use 1-
based indexing, so the first index of y is 1, not 0.

More About

Bit-Reversed Ordering

bitrevorder is useful for prearranging filter coefficients so that bit-reversed ordering does not have
to be performed as part of an fft or ifft computation.

Bit-reversed ordering can improve run-time efficiency for external applications or for Simulink®
blockset models. Both MATLAB fft and ifft functions process linear input and output.

Note Using bitrevorder is equivalent to using digitrevorder with radix base 2.

This table shows the numbers 0 through 7, the corresponding bits, and the bit-reversed numbers.

Linear Index Bits Bit-Reversed Bit-Reversed Index
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
digitrevorder | fft | ifft

Introduced before R2006a
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Blackman window

Syntax
w = blackman(L)
w = blackman(L,sflag)

Description

w = blackman(L) returns an L-point symmetric Blackman window.

w = blackman(L,sflag) returns a Blackman window using the window sampling method specified
by sflag.

Examples

Blackman Window

Create a 64-point Blackman window. Display the result using wvtool.

L = 64;
wvtool(blackman(L))
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Input Arguments

L — Window length
positive integer

Window length, specified as a positive integer.

Data Types: single | double

sflag — Window sampling
"symmetric’' (default) | 'periodic'

Window sampling method, specified as:

* 'symmetric' — Use this option when using windows for filter design.

* 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to
have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic’

is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments

w — Blackman window
column vector
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Blackman window, returned as a column vector.

Algorithms
The following equation defines the Blackman window of length N:
_ 2mn 4mn
w(n) = 0.42 - O.SCos(m) + 0.0SCos(m), 0OsnsM-1

where M is N/2 when N is even and (N + 1)/2 when N is odd.

In the symmetric case, the second half of the Blackman window, M < n < N - 1, is obtained by
reflecting the first half around the midpoint. The symmetric option is the preferred method when
using a Blackman window in FIR filter design.

The periodic Blackman window is constructed by extending the desired window length by one sample
to N + 1, constructing a symmetric window, and removing the last sample. The periodic version is the
preferred method when using a Blackman window in spectral analysis because the discrete Fourier
transform assumes periodic extension of the input vector.

References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, pp. 468-471.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Apps
Window Designer

Functions
WVTool | flattopwin | hamming | hann

Introduced before R2006a
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blackmanharris

Minimum four-term Blackman-Harris window

Syntax

blackmanharris(N)
blackmanharris(N,sflag)

w
w

Description

blackmanharris(N) returns an N-point symmetric four-term Blackman-Harris window.

w
w = blackmanharris(N,sflag) returns a Blackman-Harris window using the window sampling
method specified by sflag.

Examples

Blackman-Harris Window
Create a 32-point symmetric Blackman-Harris window. Display the result using wvtool.

N = 32;
wvtool (blackmanharris(N))
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Input Arguments

N — Window length
positive integer

Window length, specified as a positive integer.

Data Types: single | double

sflag — Window sampling
"symmetric’' (default) | 'periodic'

Window sampling method, specified as:

* 'symmetric' — Use this option when using windows for filter design.

* 'periodic' — This option is useful for spectral analysis because it enables a windowed signal to
have the perfect periodic extension implicit in the discrete Fourier transform. When 'periodic’
is specified, the function computes a window of length L + 1 and returns the first L points.

Output Arguments

w — Blackman-Harris window
column vector
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Blackman-Harris window, returned as a column vector.

Algorithms

The equation for the symmetric four-term Blackman-Harris window of length N is

2mn
N-1

4mn |\ _ 61n _
) + azcos(N_ 1) agcos(ﬁ), 0=sn=N-1

w(n) = qp — alcos(

The equation for the periodic four-term Blackman-Harris window of length N is

2mn 4mn 6mn
w(n) = qp — a1C08 =7~ + axCOS—— — a3COS——, 0=snsN-1

The periodic window is N-periodic.

Coefficient Value
a, 0.35875
a 0.48829
a, 0.14128
as 0.01168
References

[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51-83.
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C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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bohmanwin

Bohman window

Syntax

w = bohmanwin(L)

Description

w = bohmanwin (L) returns an L-point Bohman window in w.

Examples

Bohman Window

Compute a 64-point Bohman window. Display the result using wvtool.

L = 64;
bw = bohmanwin(L);
wvtool (bw)
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Input Arguments

L — Window length
positive integer

Window length, specified as a positive integer.

Data Types: single | double

Output Arguments

w — Bohman window
column vector

Bohman window, returned as a column vector.

Algorithms

A Bohman window is the convolution of two half-duration cosine lobes. In the time domain, it is the
product of a triangular window and a single cycle of a cosine with a term added to set the first
derivative to zero at the boundary. Bohman windows fall off as 1/w*.The equation for computing the
coefficients of a Bohman window is

wi) = (1 - |x‘)cos(ﬂ‘x‘) +%sin(n|x ), —ls=xs<l

where x is a length-L vector of linearly spaced values generated using linspace. The first and last
elements of the Bohman window are forced to be identically zero.

References

[1] harris, fredric j. “On the Use of Windows for Harmonic Analysis with the Discrete Fourier
Transform.” Proceedings of the IEEE. Vol. 66, January 1978, pp. 51-83.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Apps
Window Designer

Functions
WVTool | barthannwin | bartlett | blackmanharris | nuttallwin | parzenwin | rectwin |
triang
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buffer

Buffer signal vector into matrix of data frames

Syntax

buffer(x,n)
buffer(x,n,p)
buffer(x,n,p,opt)
[y,z] = buffer( )

[y,z,opt] = buffer( )

<K<K <
Inmn

Description

y = buffer(x,n) partitions a length-L signal vector x into nonoverlapping data segments (frames)
of length n.

y = buffer(x,n,p) overlaps or underlaps successive frames in the output matrix by p samples.

y = buffer(x,n,p,opt) specifies a vector of samples to precede x(1) in an overlapping buffer, or
the number of initial samples to skip in an underlapping buffer.

[y,z] = buffer( ) partitions the length-L signal vector x into frames of length n, and outputs
only the full frames in y. The vector z contains the remaining samples. This syntax can include any
combination of input arguments from the previous syntaxes.

[y,z,opt] = buffer( ) returns the last p samples of an overlapping buffer in output opt.

Examples

Continuous Overlapping Buffers
Create a buffer containing 100 frames, each with 11 samples.
data = buffer(1:1100,11);

Take the frames (columns) in the matrix data to be the sequential outputs of a data acquisition board
sampling a physical signal: data(:, 1) is the first D/A output, containing the first 11 signal samples;
data(:,2) is the second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4 with an
overlap of 1. Call buffer to operate on each successive input frame, using the opt parameter to
maintain consistency in the overlap from one buffer to the next.

Set the buffer parameters. Specify a value of -5 for y(1). The carryover vector is empty initially.

_5;
I;

N O T S
©
~+

— Il =5
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Now repeatedly call buffer, each time passing in a new signal frame (column) from data. Overflow
samples (returned in z) are carried over and prepended to the input in the subsequent call to
buffer.

for i = 1l:size(data,?2)

x = data(:,1);

[y,z,opt] = buffer([z;x],n,p,opt);
end

Here's what happens during the first four iterations.

Heration  [npart frome [z;x]' opt [inpuf) opt [output) Ouiput bulter (y)  Overdlow (z)
-5 31 &
. 1 4 7
1=1 [1:11] =5 [10 11]
e 2 5 8
3 6 9
./—-(3 1215 18]
: 1013 1619
1=2 [10 11 12:22] [22]
O 11 14 17 20
|12 15 18 21
(::) 24 27 30|
i=a [22 23:33] ®/_. == [l
23 26 29 32
|24 27 30 33]
36 39
i=4 [34:44] 42 e 2 [43 44]
35 38 41
36 39 42

The size of the output matrix, y, can vary by a single column from one iteration to the next. This is
typical for buffering operations with overlap or underlap.

Continuous Underlapping Buffers

Create a buffer containing 100 frames, each with 11 samples.

data = buffer(1:1100,11);

Take data(:,1) as the first D/A output, containing the first 11 signal samples, data(:,2) as the
second output, containing the next 11 signal samples, and so on.

You want to rebuffer this signal from the acquired frame size of 11 to a frame size of 4 with an
underlap of 2. To do this, you will repeatedly call buffer to operate on each successive input frame,
using the opt parameter to maintain consistency in the underlap from one buffer to the next.

Set the buffer parameters. Specify a new frame size of 4 and an underlap of -2. Skip the first input
element, x (1), by setting opt to 1. The carryover vector is empty initially.
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Now repeatedly call buffer, each time passing in a new signal frame (column) from data. Overflow
samples (returned in z) are carried over and prepended to the input in the subsequent call to
buffer.

for i = 1l:size(data,?2)

x = data(:,1);

[y,z,opt] = buffer([z';x],n,p,opt);
end

Here's what happens during the first three iterations.

The size of the output matrix, y, can vary by a single column from one iteration to the next. This is
typical for buffering operations with overlap or underlap.

Input Arguments

x — Input signal
vector
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Input signal, specified as a vector.

n — Frame length
positive real scalar

Frame length, specified as a positive real scalar.

p — Number of samples
positive real scalar

Number of samples, specified as a real positive scalar.

* For 0 < p < n (overlap), buffer repeats the final p samples of each frame at the beginning of the
following frame. For example, if x = 1:30 and n = 7, an overlap of p = 3 looks like this.

Ll' =
8] 2 G 10 14 18 o 26
o] 3 7 il 15 19 o] =2
8] 4 B 12 16 20 =) 2B
1 ] 9 13 17 21 25 22
2 G 10 14 18 = 26 an
3 ¥ 11 15 19 z 27 o
4 B 12 16 20 24 fa] [u]

The first frame starts with p zeros (the default initial condition), and the number of columns in y is
ceil(L/(n-p)).

* For p < 0 (underlap), buffer skips p samples between consecutive frames. For example, if
x = 1:30 and n = 7, a buffer with underlap of p = -3 looks like this.

E.r =

1 11 21

2 12 22

3 13 23 g 1B o=
4 14 24 5H|]|]E!:|+ g 1O E}
5 16 25 10 20 0
G 16 26

7 17 27

The number of columns in y is ceil(L/(n-p)).

opt — Option
zeros(p, 1) (default) | 'nodelay"' | vector | integer

Option, specified as a vector or integer.

* For 0 < p < n (overlap), opt specifies a length-p vector to insert before x (1) in the buffer. This
vector can be considered an initial condition, which is needed when the current buffering
operation is one in a sequence of consecutive buffering operations. To maintain the desired frame
overlap from one buffer to the next, opt should contain the final p samples of the previous buffer
in the sequence. See “Continuous Buffering” on page 1-102 below.

By default, opt is zeros(p, 1) for an overlapping buffer. Set opt to 'nodelay"' to skip the initial

condition and begin filling the buffer immediately with x(1). In this case, L must be length(p)
or longer. For example, if x = 1:30 and n = 7, a buffer with overlap of p = 3 looks like this.
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E.r =
1 =] 9 13 17 21 =]
2 G 10 14 18 = 26
3 ¥ 11 15 19 for] Zr
4 B 12 16 20 24 2
5 o 13 17 2 2 20
G 10 14 18 = 26 an
7 11 15 12 23 27 o

» For p < 0 (underlap), opt is an integer value in the range [0, -p] specifying the number of initial
input samples, x(1:0pt), to skip before adding samples to the buffer. The first value in the buffer
is therefore x (opt+1). By default, opt is zero for an underlapping buffer.

This option is especially useful when the current buffering operation is one in a sequence of
consecutive buffering operations. To maintain the desired frame underlap from one buffer to the
next, opt should equal the difference between the total number of points to skip between frames
(p) and the number of points that were available to be skipped in the previous input to buffer. If
the previous input had fewer than p points that could be skipped after filling the final frame of
that buffer, the remaining opt points need to be removed from the first frame of the current
buffer. See “Continuous Buffering” on page 1-102 for an example of how this works in practice.

Output Arguments

y — Data frame
matrix

Data frame, returned as a matrix. Each data frame occupies one column of y, which has n rows and
ceil(L/n) columns. If L is not evenly divisible by n, the last column is zero-padded to length n.

» Ifyis an overlapping buffer, it has n rows and m columns, where m = floor(L/(n-p)) when
length(opt) = porm = ceil((L-p)/(n-p)) when opt = 'nodelay’.

+ Ifyis an underlapping buffer, it has n rows and m columns, where m = floor((L-opt)/(n-p))
+ (rem((L-opt),(n-p)) >= n).

z — Remaining samples
vector

Remaining samples, returned as a vector. If the number of samples in the input vector (after the
appropriate overlapping or underlapping operations) exceeds the number of places available in the n-
by-m buffer, the remaining samples in x are output in vector z, which for an overlapping buffer has
length L - m*(n-p) when length(opt) = porL - ((m-1)*(n-p)+n) when opt =
'nodelay’, and for an underlapping buffer has length (L-opt) - m*(n-p).

z has the same orientation (row or column) as x. If there are no remaining samples in the input after
the buffer with the specified overlap or underlap is filled, z is an empty vector

opt — Last p samples
vector

Last p samples, returned as a vector. In an underlapping buffer, opt is the difference between the
total number of points to skip between frames (-p) and the number of points in x that were available
to be skipped after filling the last frame. In a sequence of buffering operations, the opt output from
each operation should be used as the opt input to the subsequent buffering operation. This ensures
that the desired frame overlap or underlap is maintained from buffer to buffer, as well as from frame
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to frame within the same buffer. See “Continuous Buffering” on page 1-102 for an example of how
this works in practice.

* For 0 < p < n (overlap), opt (as an output) contains the final p samples in the last frame of the
buffer. This vector can be used as the initial condition for a subsequent buffering operation in a
sequence of consecutive buffering operations. This allows the desired frame overlap to be
maintained from one buffer to the next.

» For p < 0 (underlap), opt (as an output) is the difference between the total number of points to
skip between frames (p) and the number of points in x that were available to be skipped after
filling the last frame: opt = m*(n-p) + opt - L, where opt on the right is the input argument
to buffer, and opt on the left is the output argument. z is the empty vector. Here m is the
number of columns in the buffer, withm = floor((L-opt)/(n-p)) + (rem((L-opt), (n-
p))>=n).

Note that for an underlapping buffer output, opt is always zero when output z contains data.

The opt output for an underlapping buffer is especially useful when the current buffering
operation is one in a sequence of consecutive buffering operations. The opt output from each
buffering operation specifies the number of samples that need to be skipped at the start of the
next buffering operation to maintain the desired frame underlap from one buffer to the next. If
fewer than p points were available to be skipped after filling the final frame of the current buffer,
the remaining opt points need to be removed from the first frame of the next buffer.

Diagnostics

Error messages are displayed when p =n or length(opt)#length(p) in an overlapping buffer
case:

Frame overlap P must be less than the buffer size N.
Initial conditions must be specified as a length-P vector.

More About

Continuous Buffering

In a continuous buffering operation, the vector input to the buffer function represents one frame in
a sequence of frames that make up a discrete signal. These signal frames can originate in a frame-
based data acquisition process, or within a frame-based algorithm like the FFT.

For example, you might acquire data from an A/D card in frames of 64 samples. In the simplest case,
you could rebuffer the data into frames of 16 samples; buffer with n = 16 creates a buffer of four
frames from each 64-element input frame. The result is that the signal of frame size 64 has been
converted to a signal of frame size 16; no samples were added or removed.

In the general case where the original signal frame size, L, is not equally divisible by the new frame
size, n, the overflow from the last frame needs to be captured and recycled into the following buffer.
You can do this by iteratively calling buffer on input x with the two-output-argument syntax:

is a column vector.
is a row vector.

buffer([z;x],n) %
buffer([z,x],n) %

[y,z]
[y,zl]

X
X

This simply captures any buffer overflow in z, and prepends the data to the subsequent input in the
next call to buffer. Again, the input signal, x, of frame size L, has been converted to a signal of
frame size n without any insertion or deletion of samples.



buffer

Note that continuous buffering cannot be done with the single-output syntax y = buffer(...),
because the last frame of y in this case is zero padded, which adds new samples to the signal.

Continuous buffering in the presence of overlap and underlap is handled with the opt parameter,
which is used as both an input and output to buffer. The two examples on this page demonstrate
how the opt parameter should be used.

See Also
reshape

Introduced before R2006a
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buttap

Butterworth filter prototype

Syntax
[z,p,k] = buttap(n)

Description

[z,p,k] = buttap(n) returns the poles and gain of an order n Butterworth analog lowpass filter
prototype.

Examples

Frequency Response of a Butterworth Analog Filter

Design a 9th-order Butterworth analog lowpass filter. Display its magnitude and phase responses.

[z,p,k] = buttap(9); % Butterworth filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
freqs(num,den) % Frequency response of analog filter
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Input Arguments

n — Order of Butterworth filter
positive integer scalar

Order of Butterworth filter, specified as a positive integer scalar.

Output Arguments

z — Zeros
matrix

Zeros of the system, returned as a matrix. z contains the numerator zeros in its columns. z is an
empty matrix because there are no zeros.

p — Poles
column vector

Poles of the system, returned as a column vector. p contains the pole locations of the denominator
coefficients of the transfer function.

k — Gains
scalar

Gains of the system, returned as a scalar. k contains the gains for each numerator transfer function.

Algorithms

The function buttap returns the poles in the length n column vector p and the gain in scalar k. z is
an empty matrix because there are no zeros. The transfer function is

2(s) _ k
p(s) (s = p(D)(s = p(2))-(s — p(n))

H(s) =

[1;
exp(sqrt(-1)*
real(prod(-p)

(pi*(1:2:2*n-1)/(2*n)+pi/2)).";
)i

X T

Note The function buttap returns zeros, poles, and gain (z, p, and k) in MATLAB. However, the
generated C/C++ code for buttap returns only poles p and gain k since zeros z is always an empty
matrix.

Butterworth filters are characterized by a magnitude response that is maximally flat in the passband
and monotonic overall. In the lowpass case, the first 2n-1 derivatives of the squared magnitude
response are zero at w = 0. The squared magnitude response function is

1
Hw)*= ————
H(w)] 1 + (w/wp)™
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corresponding to a transfer function with poles equally spaced around a circle in the left half plane.

The magnitude response at the cutoff angular frequency wy is always 1/4/2 regardless of the filter
order. buttap sets wg to 1 for a normalized result.

References

[1] Parks, T. W,, and C. S. Burrus. Digital Filter Design. New York: John Wiley & Sons, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
besselap | butter | cheblap | cheb2ap | ellipap

Introduced before R2006a
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Butterworth filter design

butter(n,Wn)
[b,al] butter(n,Wn, ftype)

butter( )

= butter( )
[A,B,C,D] =

[ 1 = butter( ,'s!")

Description

[b,a] = butter(n,Wn) returns the transfer function coefficients of an nth-order lowpass digital
Butterworth filter with normalized cutoff frequency Wn.

[b,al] = butter(n,Wn,ftype) designs a lowpass, highpass, bandpass, or bandstop Butterworth
filter, depending on the value of ftype and the number of elements of Wn. The resulting bandpass
and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-114 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = butter( ) designs a lowpass, highpass, bandpass, or bandstop digital Butterworth
filter and returns its zeros, poles, and gain. This syntax can include any of the input arguments in
previous syntaxes.

[A,B,C,D] = butter( ) designs a lowpass, highpass, bandpass, or bandstop digital
Butterworth filter and returns the matrices that specify its state-space representation.

[ 1 = butter(__ ,'s"') designs a lowpass, highpass, bandpass, or bandstop analog
Butterworth filter with cutoff angular frequency Wn.

Examples

Lowpass Butterworth Transfer Function
Design a 6th-order lowpass Butterworth filter with a cutoff frequency of 300 Hz, which, for data

sampled at 1000 Hz, corresponds to 0.6 rad/sample. Plot its magnitude and phase responses. Use it
to filter a 1000-sample random signal.

butter(6,fc/(fs/2));
a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Bandstop Butterworth Filter

Design a 6th-order Butterworth bandstop filter with normalized edge frequencies of 0.2m and 0. 6
rad/sample. Plot its magnitude and phase responses. Use it to filter random data.

[b,a] = butter(3,[0.2 0.6], 'stop');
freqz(b,a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Butterworth Filter

Design a 9th-order highpass Butterworth filter. Specify a cutoff frequency of 300 Hz, which, for data
sampled at 1000 Hz, corresponds to 0.6 rad/sample. Plot the magnitude and phase responses.
Convert the zeros, poles, and gain to second-order sections for use by fvtool.

[z,p,k] = butter(9,300/500, "high");

sos = zp2sos(z,p,k);
fvtool(sos, 'Analysis', 'freq")
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Magnitude Response (dB) and Phase Response
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Bandpass Butterworth Filter

Design a 20th-order Butterworth bandpass filter with a lower cutoff frequency of 500 Hz and a higher
cutoff frequency of 560 Hz. Specify a sample rate of 1500 Hz. Use the state-space representation.
Design an identical filter using designfilt.

[A,B,C,D] = butter(10,[500 560]/750);

d = designfilt('bandpassiir','FilterOrder',20, ...
'HalfPowerFrequencyl', 500, 'HalfPowerFrequency2',560,
'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);

fvt = fvtool(sos,d, 'Fs',1500);
legend(fvt, 'butter', 'designfilt')
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Magnitude Response (dB)
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Comparison of Analog IIR Lowpass Filters

Design a Sth-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2m
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

5 .

n ;
2e9;

.f:

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] zp2tf(zb,pb,kb);
[hb,wb] freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passhand
ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s");

[bl,al] = zp2tf(zl1l,pl,kl);
[h1,wl] = freqs(bl,al,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.
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[z2,p2,k2] = cheby2(n,30,2*pi*f,'s");
[b2,a2] zp2tf(z2,p2,k2);
[h2,w2] freqs(b2,a2,4096);

Design a Sth-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2%pi*f,'s");
[be,ael] zp2tf(ze,pe, ke);
[he,we] freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))

hold on

plot(wl/(2e9*pi),mag2db(abs(hl)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))

axis([0 4 -40 5])

grid

xlabel('Frequency (GHz)")
ylabel('Attenuation (dB)")
legend('butter', 'chebyl', 'cheby2','ellip')

butter

i
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The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.
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Input Arguments

n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.

Data Types: double

Wn — Cutoff frequency
scalar | two-element vector

Cutoff frequency, specified as a scalar or a two-element vector. The cutoff frequency is the frequency
at which the magnitude response of the filter is 1 / V2.

* IfWnis scalar, then butter designs a lowpass or highpass filter with cutoff frequency Wn.

If Wn is the two-element vector [wl w2], where wl < w2, then butter designs a bandpass or
bandstop filter with lower cutoff frequency wl and higher cutoff frequency w2.

+ For digital filters, the cutoff frequencies must lie between 0 and 1, where 1 corresponds to the
Nyquist rate—half the sample rate or m rad/sample.

For analog filters, the cutoff frequencies must be expressed in radians per second and can take on
any positive value.

Data Types: double

ftype — Filter type
‘low' | 'bandpass' | "high' | 'stop’

Filter type, specified as one of the following:

* 'low' specifies a lowpass filter with cutoff frequency Wn. ' Low' is the default for scalar Wn.
* 'high' specifies a highpass filter with cutoff frequency Wn.

* 'bandpass' specifies a bandpass filter of order 2n if Wn is a two-element vector. ' bandpass' is
the default when Wn has two elements.

* 'stop' specifies a bandstop filter of order 2n if Wn is a two-element vector.

Output Arguments

b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

» For digital filters, the transfer function is expressed in terms of b and a as

Bz) b(1)+b)z !+ - +bm+1)z~"
AZ)  a+a@)z '+ +am+)z
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» For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B6) _ bA)s" +Db(2)s" "1+ - +b(n+1)
AS)  a(l)s"+a)s" "1+ +am+l)’

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

« For digital filters, the transfer function is expressed in terms of z, p, and k as
L-z)z (1 -2z2) 2z Y1 -zm)z™h

(1-p()z H A -pR)z"H-(1 - pm)z~h)’
» For analog filters, the transfer function is expressed in terms of z, p, and k as

H(Zz)=k

_ 1 (§=2(1)) (s = z(2))--(s — z(n))
H(S) = ks =M 5= p2) G = p@))

Data Types: double

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then Aism x m, Bism x 1, Cis 1 x m, and D
is1x 1.

» For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k).

» For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x=Ax+Bu
y=Cx+Du.

Data Types: double

More About

Limitations
Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z, p, k] output with zp2sos. If you design the filter using the [b, a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.



butter

n==o;
Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass';

% Transfer Function design
[b,al] = butter(n,Wn,ftype); % This is an unstable filter

% Zero-Pole-Gain design
[z,p,k] = butter(n,Wn,ftype);
sos = zp2sos(z,p,k);

% Display and compare results
hfvt = fvtool(b,a,sos, 'FrequencyScale', 'log');
legend(hfvt, 'TF Design', 'ZPK Design')

Magnitude Response (dB)
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@ / ! . N
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= 4 [ bt
o -150 / f ]
@ / -
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/ \
-200 \-
-250 \|
10°3 1072 107"

Mormalized Frequency (=« rad/sample)

Algorithms

Butterworth filters have a magnitude response that is maximally flat in the passband and monotonic
overall. This smoothness comes at the price of decreased rolloff steepness. Elliptic and Chebyshev
filters generally provide steeper rolloff for a given filter order.

butter uses a five-step algorithm:

1 [t finds the lowpass analog prototype poles, zeros, and gain using the function buttap.
2 [t converts the poles, zeros, and gain into state-space form.
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3 Ifrequired, it uses a state-space transformation to convert the lowpass filter into a bandpass,
highpass, or bandstop filter with the desired frequency constraints.

4 For digital filter design, it uses bilinear to convert the analog filter into a digital filter through
a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the
analog filters and the digital filters to have the same frequency response magnitude at Wn or at
wl and w2.

5 It converts the state-space filter back to its transfer function or zero-pole-gain form, as required.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
besself | buttap | buttord | chebyl | cheby2 |designfilt|ellip | filter | maxflat |
sosfilt

Introduced before R2006a
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buttord

Butterworth filter order and cutoff frequency

Syntax

[n,Wn] buttord(Wp,Ws,Rp,Rs)

[n,Wn] buttord(Wp,Ws,Rp,Rs,'s")

Description

[n,Wn] = buttord(Wp,Ws,Rp,Rs) returns the lowest order, n, of the digital Butterworth filter
with no more than Rp dB of passband ripple and at least Rs dB of attenuation in the stopband. Wp and
Ws are respectively the passband and stopband edge frequencies of the filter, normalized from 0 to 1,
where 1 corresponds to i rad/sample. The scalar (or vector) of corresponding cutoff frequencies, Wn,
is also returned. To design a Butterworth filter, use the output arguments n and Wn as inputs to
butter.

[n,Wn] = buttord(Wp,Ws,Rp,Rs, 's") finds the minimum order n and cutoff frequencies Wn for
an analog Butterworth filter. Specify the frequencies Wp and Ws in radians per second. The passband
or the stopband can be infinite.

Examples

Lowpass Butterworth Filter

For data sampled at 1000 Hz, design a lowpass filter with no more than 3 dB of ripple in a passband
from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband. Find the filter order and cutoff
frequency.

Wp
Ws

40/500;
150/500;

[n,Wn] = buttord(Wp,Ws,3,60)

n=>5

Wn = 0.0810

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = butter(n,Wn);
sos = zp2sos(z,p,k);

freqz(sos,512,1000)
title(sprintf('n = %d Butterworth Lowpass Filter',n))
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0 n = 5 Butterworth Lowpass Filter
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Bandpass Butterworth Filter

Design a bandpass filter with a passband from 100 to 200 Hz with at most 3 dB of passband ripple
and at least 40 dB attenuation in the stopbands. Specify a sample rate of 1 kHz. Set the stopband
width to 50 Hz on both sides of the passband. Find the filter order and cutoff frequencies.

Wp = [100 200]/500;

Ws = [50 250]1/500;

Rp = 3;

Rs = 40;

[n,Wn] = buttord(Wp,Ws,Rp,Rs)
n=28

Wn = Ix2

0.1951 0.4080

Specify the filter in terms of second-order sections and plot the frequency response.

[z,p,k] = butter(n,Wn);
sos = zp2sos(z,p,k);

freqz(sos,128,1000)
title(sprintf('n = %d Butterworth Bandpass Filter',n))
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0 n = 8 Butterworth Bandpass Filter
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Input Arguments

Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1, with 1 corresponding to the normalized Nyquist frequency,  rad/sample.

* IfWp and Ws are both scalars and Wp < Ws, then buttord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1 and the passband ranges from 0

to Wp.

* IfWp and Ws are both scalars and Wp > Ws, then buttord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws and the passband ranges from
Wp to 1.

» IfWp and Ws are both vectors and the interval specified by Ws contains the one specified by Wp
Ws (1) <Wp(1l) <Wp(2) <Ws(2)), then buttord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws (1) and from Ws(2) to 1. The
passbhand ranges from Wp (1) toWp(2).

+ IfWp and Ws are both vectors and the interval specified by Wp contains the one specified by Ws
(Wp(1) <Ws (1) <Ws(2) <Wp(2)), then buttord returns the order and cutoff frequencies of a
bandstop filter. The stopband of the filter ranges from Ws (1) to Ws (2). The passband ranges from
0toWp(1l) and from Wp(2) to 1.
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Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripple in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and
1, with 1 corresponding to the normalized Nyquist frequency, i rad/sample.

Data Types: single | double

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar expressed in dB.

Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar expressed in dB.

Data Types: single | double

Output Arguments

n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Wn — Cutoff frequencies
scalar | vector

Cutoff frequencies, returned as a scalar or vector.

Algorithms

buttord’s order prediction formula operates in the analog domain for both analog and digital cases.
For the digital case, it converts the frequency parameters to the s-domain before estimating the order
and natural frequency. The function then converts back to the z-domain.

buttord initially develops a lowpass filter prototype by transforming the passband frequencies of the
desired filter to 1 rad/second (for lowpass and highpass filters) and to -1 and 1 rad/second (for
bandpass and bandstop filters). It then computes the minimum order required for a lowpass filter to
meet the stopband specification.
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References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
butter | cheblord | cheb2ord | ellipord | kaiserord

Introduced before R2006a
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cceps

Complex cepstral analysis

Syntax

xhat = cceps(x)

[xhat,nd] = cceps(x)
[xhat,nd,xhatl] = cceps(x)
[ 1 = cceps(x,n)

Description

xhat = cceps(x) returns the complex cepstrum xhat of the real data sequence x using the Fourier
transform.

Note cceps only works on real data.

[xhat,nd] = cceps(x) returns the number of samples nd of (circular) delay added to x prior to
finding the complex cepstrum.

[xhat,nd,xhatl] = cceps(x) returns a second complex cepstrum, xhat1l.

[ 1 = cceps(x,n) zero pads x to length n and returns the length n.

Examples

Using cceps to show an echo

This example uses cceps to show an echo. Generate a sine of frequency 45 Hz, sampled at 100 Hz.
Add an echo with half the amplitude and 0.2 s later. Compute the complex cepstrum of the signal.
Notice the echo at 0.2 s.

Fs = 100;

t =0:1/Fs:1.27;

sl = sin(2*pi*45%*t);

s2 = sl + 0.5*%[zeros(1,20) s1(1:108)];

C = cceps(s2);

plot(t,c)
xLlabel('Time (s)')
title('Complex cepstrum')
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Complex cepstrum
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Input Arguments

x — Input signal
real vector

Input signal, specified as a real vector. By the application of a linear phase term, the input is altered
to have no phase discontinuity at =m radians. That is, it is circularly shifted (after zero padding) by
some samples, if necessary, to have zero phase at o radians.

n — Length of zero-padded signal
positive real integer

Length of zero-padded signal, specified as a positive real integer.

Output Arguments

xhat — Complex cepstrum
vector

Complex cepstrum, returned as a vector.

nd — Number of samples
real positive scalar
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Number of samples of circular delay added to X, returned as a positive real scalar.

xhatl — Second complex cepstrum
vector

Second complex cepstrum, returned as a vector. xhatl is computed using an alternative factorization
algorithm specified in the references [1] and [2]. This method can be applied only to finite-duration
signals. See the Algorithm section below for a comparison of the Fourier and factorization methods of
computing the complex cepstrum.

Algorithms

Cepstral analysis is a nonlinear signal processing technique that is applied most commonly in speech
processing and homomorphic filtering [1]. cceps is an implementation of algorithm 7.1 in [3]. A
lengthy Fortran program reduces to these three lines of MATLAB code, which compose the core of
cceps:

h = fft(x);
logh = log(abs(h)) + sqrt(-1)*rcunwrap(angle(h));
y = real(ifft(logh));

Note rcunwrap in the above code segment is a special version of unwrap that subtracts a straight
line from the phase. rcunwrap is a local function within cceps and is not available for use from the
MATLAB command line.

The following table lists the pros and cons of the Fourier and factorization algorithms.

Algorithm Pros Cons
Fourier Can be used for any signal. Requires phase unwrapping. Output is
aliased.
Factorization Does not require phase Can be used only for short duration
unwrapping. No aliasing signals. Input signal must have an all-
zero Z-transform with no zeros on the
unit circle.

In general, you cannot use the results of these two algorithms to verify each other. You can use them
to verify each other only when the first element of the input data is positive, the Z-transform of the
data sequence has only zeros, all of these zeros are inside the unit circle, and the input data sequence
is long (or padded with zeros).

References

[1] Oppenheim, Alan V.,, Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. Upper
Saddle River, NJ: Prentice Hall, 1999, pp. 788-789.

[2] Steiglitz, K., and B. Dickinson. “Computation of the Complex Cepstrum by Factorization of the Z-
transform.” Proceedings of the 1977 IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 723-726.

[3] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing
Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979.



cceps

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

See Also
hilbert | icceps | rceps | unwrap

Introduced before R2006a
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cconv

Modulo-n circular convolution

Syntax

C
C

cconv(a,b)
cconv(a,b,n)

Description

C cconv(a,b) convolves vectors a and b.

¢ = cconv(a,b,n) circularly convolves vectors a and b. n is the length of the resulting vector. You
can also use cconv to compute the circular cross-correlation of two sequences.

Examples

Circular Convolution and Linear Convolution

Generate two signals of different lengths. Compare their circular convolution and their linear
convolution. Use the default value for n.

a=1[12-11];

b=[11212211];

c = cconv(a,b); % Circular convolution
cref = conv(a,b); % Linear convolution

dif = norm(c-cref)
dif = 9.7422e-16

The resulting norm is virtually zero, which shows that the two convolutions produce the same result
to machine precision.

Circular Convolution

Generate two vectors and compute their modulo-4 circular convolution.

[2121];
[1 23 4];
cconv(a,b,4)

a
b
C

1x4

0
Il

14 16 14 16
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Circular Cross-Correlation

Generate two complex sequences. Use cconv to compute their circular cross-correlation. Flip and
conjugate the second operand to comply with the definition of cross-correlation. Specify an output
vector length of 7.

[1 22 1]+11;
[1 34 1]-2*11;
cconv(a,conj(fliplr(b)),7);

a
b
C

Compare the result to the cross-correlation computed using xcorr.

cref = xcorr(a,b);
dif = norm(c-cref)

dif = 3.3565e-15

Circular Convolution with Varying Output Length

Generate two signals: a five-sample triangular waveform and a first-order FIR filter with response
Hz)=1-z"1

x1 = conv([1 1 1]1,[1 1 11)

X1 = 1Ix5

1 2 3 2 1
x2 = [-1 1]
X2 = 1x2

-1 1

Compute their circular convolution with the default output length. The result is equivalent to the
linear convolution of the two signals.

ccnvy = cconv(xl,x2)
ccnv = 1Ix6

-1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000

lcnv

conv(x1l,x2)

lcnv = 1Ix6
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The modulo-2 circular convolution is equivalent to splitting the linear convolution into two-element
arrays and summing the arrays.

ccn2 = cconv(x1,x2,2)

cecn2 = 1Ix2

-1 1

nl = numel(lcnv);
mod2 = sum(reshape(lcnv,2,nl/2)")

mod2 = 1Ix2

-1 1

Compute the modulo-3 circular convolution and compare it to the aliased linear convolution.

ccn3 cconv(x1l,x2,3)

Ix3

cecn3

mod3

sum(reshape(lcnv,3,nl/3)")

mod3 Ix3

If the output length is smaller than the convolution length and does not divide it exactly, pad the
convolution with zeros before adding.

C 5;
z zeros(c*ceil(nl/c),1);
z(1:nl) = lcnv;

ccnc = cconv(xl,x2,c)

cene = Ix5

0.0000 -1.0000 -1.0000 1.0000 1.0000

modc = sum(reshape(z,c,numel(z)/c)")

modc = 1Ix5

0 -1 -1 1 1

If the output length is equal to or larger than the convolution length, pad the convolution and do not
add.
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13;
zeros(d*ceil(nl/d),1);

d =
zZ =
z(1l:nl) = lcnv;

ccnd cconv(xl,x2,d)

cend = Ix13

-1.0000 -1.0000 -1.0000 1.0000 1.0000 1.0000 0.0000 -0.0000 0.0000 0.

modd = z'

modd = Ix13

Circular Convolution Using the GPU

The following example requires Parallel Computing Toolbox™ software. Refer to “GPU Support by
Release” (Parallel Computing Toolbox) to see what GPUs are supported.

Create two signals consisting of a 1 kHz sine wave in additive white Gaussian noise. The sample rate
is 10 kHz

= led;
0:1/Fs:10-(1/Fs);
cos(2*pi*le3*t)+randn(size(t));

Fs
t
X
y sin(2*pi*le3*t)+randn(size(t));

Put x and y on the GPU using gpuArray. Obtain the circular convolution using the GPU.

X = gpuArray(x);

y = gpuArray(y);
cirC = cconv(x,y,length(x)+length(y)-1);

Compare the result to the linear convolution of x and y.

1inC = conv(x,y);
norm(linC-circC,2)

ans =
1.4047e-08

Return the circular convolution, cirC, to the MATLAB® workspace using gather.

cirC = gather(cirC);

Input Arguments

a, b — Input arrays
vector | gpuArray object
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Input array, specified as vectors or gpuArray objects. See “Run MATLAB Functions on a GPU”
(Parallel Computing Toolbox) for details on gpuArray objects. Using cconv with gpuArray objects
requires Parallel Computing Toolbox™ software. Refer to “GPU Support by Release” (Parallel
Computing Toolbox) to see what GPUs are supported.

Example: sin(2*pi*(0:9)/10) + randn([1 10])/10 specifies a noisy sinusoid as a row vector.

Example: gpuArray(sin(2*pi*(0:9)/10) + randn([1 10])/10) specifies a noisy sinusoid as a
gpuArray object.

Data Types: single | double
Complex Number Support: Yes

n — Convolution length
positive integer

Convolution length, specified as a positive integer. If you do not specify n, then the convolution has
length length(a)+length(b)-1.

Output Arguments

¢ — Circular convolution
vector | gpuArray object

Circular convolution of input vectors, returned as a vector or gpuArray.
Tips
For long sequences, circular convolution can be faster than linear convolution.

References

[1] Orfanidis, Sophocles J. Introduction to Signal Processing. Englewood Cliffs, NJ: Prentice-Hall,
1996, pp. 524-529.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox

™

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
conv | xcorr

Introduced in R2007a
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cell2sos

Convert second-order sections cell array to matrix

Syntax

m = cell2sos(c)

Description

m = cell2sos(c) changes a 1-by-L cell array c consisting of 1-by-2 cell arrays into an L-by-6
second-order section matrix m. Matrix m takes the same form as the matrix generated by tf2sos. You
can use m = cell2sos(c) to invert the results of ¢ = sos2cell(m).

¢ must be a cell array of the form
c = { {bl al} {b2 a2} ... {bL aL} }

where both bi and ai are row vectors of at most length 3, and i = 1, 2, ..., L. The resulting matrix m
is given by

m = [bl al;b2 a2; ... ;bL aLl]

Examples

Second-Order Sections from Cell Array Input

Generate a cell array of 1-by-2 cell arrays of 1-by-3 row vectors. Convert it to a matrix of second-
order sections.

cll = {{[3 6 7] [11 2]}
{[1 4 5] [1 9 3]}
{[2 7 11 [1 7 8]}};
sos = cell2sos(cll)
S0Ss = 3x6
3 6 7 1 1 2
1 4 5 1 9 3
2 7 1 1 7 8
See Also

sos2cell | tf2sos

Introduced before R2006a
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cfirpm

Complex and nonlinear-phase equiripple FIR filter design

Syntax

b = cfirpm(n,f,@fresp)

b = cfirpm(n,f,@fresp,w)

b = cfirpm(n,f,a)

b = cfirpm(n,f,a,w)

b =cfirpm(..., " 'sym")

b = cfirpm(..., ' 'skip stage2')
b = cfirpm(..., " 'debug')

b = cfirpm(...,{lgrid})

[b,delta] = cfirpm(...)
[b,delta,opt] = cfirpm(...)

Description

cfirpm allows arbitrary frequency-domain constraints to be specified for the design of a possibly
complex FIR filter. The Chebyshev (or minimax) filter error is optimized, producing equiripple FIR
filter designs.

b = cfirpm(n,f,@fresp) returns a length n+1 FIR filter with the best approximation to the
desired frequency response as returned by function fresp, which is called by its function handle
(@fresp). f is a vector of frequency band edge pairs, specified in the range -1 and 1, where 1
corresponds to the normalized Nyquist frequency. The frequencies must be in increasing order, and f
must have even length. The frequency bands span f (k) to f(k+1) for k odd; the intervals f (k+1) to
f(k+2) for k odd are “transition bands” or “don't care” regions during optimization.

Predefined fresp frequency response functions are included for a number of common filter designs,
as described below. (See “Create Function Handle” for more information on how to create a custom
fresp function.) For all of the predefined frequency response functions, the symmetry option 'sym'
defaults to 'even' if no negative frequencies are contained in f and d = 0; otherwise 'sym' defaults
to 'none'. (See the 'sym' option below for details.) For all of the predefined frequency response
functions, d specifies a group-delay offset such that the filter response has a group delay of n/2+d in
units of the sample interval. Negative values create less delay; positive values create more delay. By
defaultd = 0:

* @lowpass, @highpass, @allpass, @bandpass, @bandstop
These functions share a common syntax, exemplified below by @lowpass.

b

cfirpm(n, f,@lowpass,...) and

b cfirpm(n,f,{@lowpass,d},...) design a linear-phase (n/2+d delay) filter.

Note For @bandpass filters, the first element in the frequency vector must be less than or equal
to zero and the last element must be greater than or equal to zero.
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* @multiband designs a linear-phase frequency response filter with arbitrary band amplitudes.

b

cfirpm(n, f,{@multiband,a},...) and

b = cfirpm(n,f,{@multiband,a,d},...) specify vector a containing the desired amplitudes
at the band edges in f. The desired amplitude at frequencies between pairs of points f (k) and
f(k+1) for k odd is the line segment connecting the points (f(k),a(k)) and (f(k+1),a(k
+1)).

+ @differentiator designs a linear-phase differentiator. For these designs, zero-frequency must
be in a transition band, and band weighting is set to be inversely proportional to frequency.

b cfirpm(n, f,{@differentiator,fs},...) and

b = cfirpm(n,f,{@differentiator,fs,d},...) specify the sample rate fs used to
determine the slope of the differentiator response. If omitted, fs defaults to 1.

* @hilbfilt designs a linear-phase Hilbert transform filter response. For Hilbert designs, zero-
frequency must be in a transition band.
b = cfirpm(n,f,@hilbfilt,...) and
b = cfirpm(N,F,{@hilbfilt,d},...) design a linear-phase (n/2+d delay) Hilbert transform
filter.

* @invsinc designs a linear-phase inverse-sinc filter response.

b cfirpm(n,f,{@invsinc,a},...) and

b = cfirpm(n,f,{@invsinc,a,d},...) specify gain a for the sinc function, computed as
sinc(a*g), where g contains the optimization grid frequencies normalized to the range [-1,1]. By
default, a = 1. The group-delay offset is d, such that the filter response will have a group delay of
N/2 + d in units of the sample interval, where N is the filter order. Negative values create less
delay and positive values create more delay. By default, d = 0.

b = cfirpm(n,f,@fresp,w) uses the real, nonnegative weights in vector w to weight the fit in
each frequency band. The length of w is half the length of f, so there is exactly one weight per band.

b = cfirpm(n,f,a) isasynonymforb = cfirpm(n,f,{@multiband,a}).

b = cfirpm(n,f,a,w) applies an optional set of positive weights, one per band, for use during
optimization. If w is not specified, the weights are set to unity.

b = cfirpm(..., " 'sym') imposes a symmetry constraint on the impulse response of the design,
where 'sym' may be one of the following:

* 'none’ indicates no symmetry constraint. This is the default if any negative band edge
frequencies are passed, or if fresp does not supply a default.

* ‘'even' indicates a real and even impulse response. This is the default for highpass, lowpass,
allpass, bandpass, bandstop, inverse-sinc, and multiband designs.

* 'odd' indicates a real and odd impulse response. This is the default for Hilbert and differentiator
designs.

* 'real' indicates conjugate symmetry for the frequency response

If any 'sym' option other than 'none' is specified, the band edges should be specified only over
positive frequencies; the negative frequency region is filled in from symmetry. If a 'sym' option is not
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specified, the fresp function is queried for a default setting. Any user-supplied fresp function
should return a valid 'sym' option when it is passed 'defaults' as the filter order N.

b = cfirpm(..., " 'skip stage2') disables the second-stage optimization algorithm, which
executes only when cfirpm determines that an optimal solution has not been reached by the
standard firpm error-exchange. Disabling this algorithm may increase the speed of computation, but
may incur a reduction in accuracy. By default, the second-stage optimization is enabled.

b = cfirpm(..., 'debug') enables the display of intermediate results during the filter design,
where 'debug' may be one of 'trace’, 'plots’', 'both', or 'off'. By default itis setto 'off"'.

b = cfirpm(...,{lgrid}) uses the integer Lgrid to control the density of the frequency grid,
which has roughly 2”nextpow2 (1grid*n) frequency points. The default value for 1grid is 25. Note
that the {lgrid} argument must be a 1-by-1 cell array.

Any combination of the 'sym', 'skip stage2', 'debug', and {lgrid} options may be specified.

[b,delta] = cfirpm(...) returns the maximum ripple height delta.

[b,delta,opt] = cfirpm(...) returns a structure opt of optional results computed by cfirpm
and contains the following fields.

Field Description

opt.fgrid Frequency grid vector used for the filter design optimization
opt.des Desired frequency response for each point in opt. fgrid
opt.wt Weighting for each point in opt. fgrid

opt.H Actual frequency response for each point in opt. fgrid
opt.error Error at each point in opt. fgrid

opt.iextr Vector of indices into opt. fgrid for extremal frequencies
opt.fextr Vector of extremal frequencies

User-definable functions may be used, instead of the predefined frequency response functions for
@fresp. The function is called from within cfirpm using the following syntax

[dh,dw] = fresp(n,f,gf,w,pl,p2,...)
where:

* nis the filter order.

+ T is the vector of frequency band edges that appear monotonically between -1 and 1, where 1
corresponds to the Nyquist frequency.

+ gf is a vector of grid points that have been linearly interpolated over each specified frequency
band by cfirpm. gf determines the frequency grid at which the response function must be
evaluated. This is the same data returned by cfirpm in the fgrid field of the opt structure.

* wis a vector of real, positive weights, one per band, used during optimization. w is optional in the
call to cfirpm; if not specified, it is set to unity weighting before being passed to fresp.

* dh and dw are the desired complex frequency response and band weight vectors, respectively,
evaluated at each frequency in grid gf.

* pl, p2, ..., are optional parameters that may be passed to fresp.
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Additionally, a preliminary call is made to fresp to determine the default symmetry property 'sym".
This call is made using the syntax:

sym = fresp('defaults',{n,f,[]1,w,pl,p2,...})

The arguments may be used in determining an appropriate symmetry default as necessary. You can
use the local function Lowpass as a template for generating new frequency response functions. To
find the lowpass function, type edit cfirpm at the command line and search for Llowpass in the
cfirpm code. You can copy the function, modify it, rename it, and save it in your path.

Examples

Equiripple Lowpass Filter

Design a 31-tap linear-phase lowpass filter. Display its magnitude and phase responses.

b =

cfirpm(30,[-1 -0.5 -0.4 0.7 0.8 1],@lowpass);

fvtool(b,1, 'OverlayedAnalysis', 'phase')

-10

Magnitude (dB)

-60

Magnitude Response (dB) and Phase Response
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FIR Approximation to Allpass Response

Z23.959

14.635

531

-4.013

-13.337

-22.661

-31.985

e | s ey |

Design a nonlinear-phase allpass FIR filter of order 22 with frequency response given approximately
by exp( — jofN/2 + jAuf|f|), where f € [ -1, 1].
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N

22;
[-11];
[11];

oQ £ -+ >

exp(-

f = linspace(-1,1,256);
li*pi*gf*n/2 + li*pi*pi*sign

Filter order

Frequency band edges
Weights for optimization
Grid of frequency points
gf).*gf.*gf*(4/pi));
Desired frequency response

o\o —~ o° o° o° o°

Use cfirpm to compute the FIR filter. Plot the actual and approximate magnitude responses in dB

and the phase responses in degrees.

b = cfirpm(n,f,

'allpass',w

freqz(b,1,256, 'whole")

subplot(2,1,1)
hold on

plot(pi*(gf+1),20*1loglO(abs(fftshift(d))),"

subplot(2,1,2)
hold on

plot(pi*(gf+1l),unwrap(angle(fftshift(d)))*180/pi,
legend('Approximation’

, 'Desired’,

'real');

'"Location'

% Approximation
% Overlay response
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Algorithms

An extended version of the Remez exchange method is implemented for the complex case. This
exchange method obtains the optimal filter when the equiripple nature of the filter is restricted to
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have n+2 extremals. When it does not converge, the algorithm switches to an ascent-descent
algorithm that takes over to finish the convergence to the optimal solution. See the references for
further details.

References

[1] Demjanjov, V. E, and V. N. Malozemov. Introduction to Minimax. New York: John Wiley & Sons,
1974.

[2] Karam, L.J. Design of Complex Digital FIR Filters in the Chebyshev Sense. Ph.D. Thesis, Georgia
Institute of Technology, March 1995.

[3] Karam, L.J., and J. H. McClellan. "Complex Chebyshev Approximation for FIR Filter Design." IEEE
Transactions on Circuits and Systems II, March 1995, pp. 207-216.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
firl|fir2 | firls | firpm

Introduced before R2006a
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cheblap

Chebyshev Type I analog lowpass filter prototype

Syntax

[z,p,k] = cheblap(n,Rp)

Description

[z,p,k] = cheblap(n,Rp) returns the poles and gain of an order n Chebyshev Type I analog
lowpass filter prototype with Rp dB of ripple in the passband. The function returns the poles in the
length n column vector p and the gain in scalar k. z is an empty matrix, because there are no zeros.
The transfer function is

2(s) _ k
p(s)  (s—p(1))(s = p(2))...(s — p(n))

H(s) =

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. The poles are
evenly spaced about an ellipse in the left half plane. The Chebyshev Type I passband edge angular
frequency wy is set to 1.0 for a normalized result. This is the frequency at which the passband ends
and the filter has magnitude response of 10-Rp/20,

Examples

Frequency Response of an Analog Chebyshev Type I Filter

Design a 6th-order Chebyshev Type I analog lowpass filter with 3 dB of ripple in the passband.
Display its magnitude and phase responses.

[z,p,k] = cheblap(6,3)
[num,den] = zp2tf(z,p,
freqs (num,den)

; % Lowpass filter prototype
k); % Convert to transfer function form
% Frequency response of analog filter

3
p
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References

[1] Parks, Thomas W.,, and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987, chap. 7.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besselap | buttap | cheb2ap | chebyl | ellipap

Introduced before R2006a
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cheblord

Chebyshev Type I filter order

Syntax

[n,Wp]
[n,Wp]

cheblord(Wp,Ws,Rp,Rs)
cheblord(Wp,Ws,Rp,Rs,'s")

Description

[n,Wp] = cheblord(Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev Type I filter that
loses no more than Rp dB in the passband and has at least Rs dB of attenuation in the stopband. The
scalar (or vector) of corresponding cutoff frequencies Wp is also returned.

[n,Wp] = cheblord(Wp,Ws,Rp,Rs,'s"') designs a lowpass, highpass, bandpass, or bandstop
analog Chebyshev Type I filter with cutoff angular frequencies Wp.

Examples

Chebyshev Type | Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the passband
defined from 0 to 40 Hz and at least 60 dB of ripple in the stopband defined from 150 Hz to the
Nyquist frequency.

Wp = 40/500;

Ws = 150/500;

Rp = 3;

Rs = 60;

[n,Wp] = cheblord(Wp,Ws,Rp,Rs)
n =4

Wp = 0.0800

[b,a] = chebyl(n,Rp,Wp);
fregz(b,a,512,1000)
title('n = 4 Chebyshev Type I Lowpass Filter')
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Chebyshev Type | Bandpass Filter Design

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of ripple in the
passband and 40 dB attenuation in the stopbands that are 50 Hz wide on both sides of the passband.

Wp
Ws
Rp
Rs

[60 200]/500;
[50 250]1/500;
3;
40;

[n,Wp] = cheblord(Wp,Ws,Rp,Rs)

n

7

Wp = 1Ix2

0.1200 0.4000

[b,a] = chebyl(n,Rp,Wp);
freqz(b,a,512,1000)
title('n = 7 Chebyshev Type I Bandpass Filter')
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n =7 Chebyshev Type | Bandpass Filter
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Input Arguments

Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1 inclusive, with 1 corresponding to the normalized Nyquist frequency, 7 rad/sample. For
digital filters, the unit of passband corner frequency is in radians per sample. For analog filters,
passband corner frequency is in radians per second, and the passband can be infinite. The values of
Wp and Ws determine the type of filter cheblord returns:
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If Wp and Ws are both scalars and Wp < Ws, then cheblord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1, and the passband ranges from 0
to Wp.

If Wp and Ws are both scalars and Wp > Ws, then cheblord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws, and the passband ranges from
Wp to 1.

If Wp and Ws are both vectors and the interval specified by Ws contains the interval specified by Wp
(Ws(1) <Wp(1l) <Wp(2) <Ws(2)), then cheblord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws (1) and from Ws(2) to 1. The
passband ranges from Wp (1) toWp(2).

If Wp and Ws are both vectors and the interval specified by Wp contains the interval specified by Ws
(Wp(1) <Ws (1) <Ws(2) <Wp(2)), then cheblord returns the order and cutoff frequencies of a
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bandstop filter. The stopband of the filter ranges from Ws (1) to Ws (2). The passband ranges from
0toWp(1l) and from Wp(2) to 1.

Use the following guide to specify filters of different types.
Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions |Stopband Passband
Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)
Bandpass The interval specified by Ws contains (0,Ws (1)) and (Wp(1),Wp(2))
the one specified by Wp (Ws (1) < (Ws(2),1)
Wp(l) < Wp(2) < Ws(2)).
Bandstop The interval specified by Wp contains (0,Wp(1)) and (Ws(1),Ws(2))
the one specified by Ws (Wp (1) < (Wp(2),1)
Ws(1l) < Ws(2) < Wp(2)).

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripples in each of

the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and 1
inclusive, with 1 corresponding to the normalized Nyquist frequency.
» For digital filters, stopband corner frequency is in radians per sample.

» For analog filters, stopband corner frequency is in radians per second and the stopband can be
infinite.

Note The values of Wp and Ws determine the filter type.

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar in dB.

Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar in dB.

Data Types: single | double
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Output Arguments

n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Wp — Passband corner frequency
scalar | two-element vector

Passband corner frequency, returned as a scalar or a two-element vector. Use the output arguments n
and Wp with the cheby1 function.

Algorithms

cheblord uses the Chebyshev lowpass filter order prediction formula described in [1]. The function
performs its calculations in the analog domain for both analog and digital cases. For the digital case,
it converts the frequency parameters to the s-domain before the order and natural frequency
estimation process, and then converts them back to the z-domain.

cheblord initially develops a lowpass filter prototype by transforming the passband frequencies of
the desired filter to 1 rad/s (for lowpass or highpass filters) or to -1 and 1 rad/s (for bandpass or

bandstop filters). It then computes the order and natural frequency required for a lowpass filter to
match the passband specification exactly when using the values in the cheby1 function.

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheb2ord | chebyl | ellipord | kaiserord

Introduced before R2006a



cheb2ap

cheb2ap

Chebyshev Type II analog lowpass filter prototype

Syntax

[z,p,k] = cheb2ap(n,Rs)

Description

[z,p,k] = cheb2ap(n,Rs) finds the zeros, poles, and gain of an order n Chebyshev Type II analog
lowpass filter prototype with stopband ripple Rs dB down from the passband peak value. cheb2ap
returns the zeros and poles in length n column vectors z and p and the gain in scalar k. If n is odd, z
is length n-1. The transfer function is

His) = 28 _ p s —z(1)(s=z(2))--- (s —z(n))
pis) (s—pilnis—p(2))---(s— pin))

Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband. The pole
locations are the inverse of the pole locations of cheblap, whose poles are evenly spaced about an
ellipse in the left half plane. The Chebyshev Type II stopband edge angular frequency wy is set to 1
for a normalized result. This is the frequency at which the stopband begins and the filter has
magnitude response of 10-Rs/20,

Examples

Frequency Response of an Analog Chebyshev Type Il Filter

Design a 6th-order Chebyshev Type II analog lowpass filter with 70 dB of ripple in the stopband.
Display its magnitude and phase responses.

[z,p,k] = cheb2ap(6,70); % Lowpass filter prototype
[num,den] = zp2tf(z,p,k); % Convert to transfer function form
F

freqs (num,den) % Frequency response of analog filter
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Algorithms

Chebyshev Type II filters are sometimes called inverse Chebyshev filters because of their relationship
to Chebyshev Type I filters. The cheb2ap function is a modification of the Chebyshev Type I
prototype algorithm:

1 cheb2ap replaces the frequency variable w with 1/w, turning the lowpass filter into a highpass
filter while preserving the performance at w = 1.

2 cheb2ap subtracts the filter transfer function from unity.

References

[1] Parks, Thomas W,, and C. Sidney Burrus. Digital Filter Design. New York: John Wiley & Sons,
1987, chap. 7.
Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.
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See Also
besselap | buttap | cheblap | cheby2 | ellipap

Introduced before R2006a
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cheb2ord

Chebyshev Type II filter order

Syntax

[n,Ws]
[n,Ws]

cheb2ord (Wp,Ws,Rp,Rs)
cheb2ord(Wp,Ws,Rp,Rs,'s")

Description

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs) returns the lowest order n of the Chebyshev Type II filter
that loses no more than Rp dB in the passband and has at least Rs dB of attenuation in the stopband.
The scalar (or vector) of corresponding cutoff frequencies Ws is also returned.

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs,'s"') designs a lowpass, highpass, bandpass, or bandstop
analog Chebyshev Type II filter with cutoff angular frequencies Ws.

Examples

Chebyshev Type Il Filter Design

For data sampled at 1000 Hz, design a lowpass filter with less than 3 dB of ripple in the passband
defined from 0 to 40 Hz, and at least 60 dB of attenuation in the stopband defined from 150 Hz to the
Nyquist frequency.

Wp = 40/500;
Ws = 150/500;
Rp = 3;
Rs = 60;

[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
n =4

Ws = 0.3000

[b,a] = cheby2(n,Rs,Ws);

freqz(b,a,512,1000)
title('n = 4 Chebyshev Type II Lowpass Filter')
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Chebyshev Type Il Bandpass Filter Design

Design a bandpass filter with a passband of 60 Hz to 200 Hz, with less than 3 dB of ripple in the
passband, and 40 dB attenuation in the stopbands that are 50 Hz wide on both sides of the passband:

Wp
Ws
Rp
Rs

[n

[60 200]/500;
[50 250]1/500;
3;
40;

,Ws] = cheb2ord(Wp,Ws,Rp,Rs)
=7
= Ix2

0.1000 0.5000

[b,a] = cheby2(n,Rs,Ws);

freqz(b,a,512,1000)
title('n = 7 Chebyshev Type II Bandpass Filter')
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n =7 Chebyshev Type |l Bandpass Filter
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Input Arguments

Wp — Passband corner (cutoff) frequency
scalar | two-element vector

Passband corner (cutoff) frequency, specified as a scalar or a two-element vector with values between
0 and 1 inclusive, with 1 corresponding to the normalized Nyquist frequency, 7 rad/sample. For
digital filters, the unit of passband corner frequency is in radians per sample. For analog filters,
passband corner frequency is in radians per second, and the passband can be infinite. The values of
Wp and Ws determine the type of filter cheb2ord returns:
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If Wp and Ws are both scalars and Wp < Ws, then cheb2ord returns the order and cutoff frequency
of a lowpass filter. The stopband of the filter ranges from Ws to 1, and the passband ranges from 0
to Wp.

If Wp and Ws are both scalars and Wp > Ws, then cheb2ord returns the order and cutoff frequency
of a highpass filter. The stopband of the filter ranges from 0 to Ws, and the passband ranges from
Wp to 1.

If Wp and Ws are both vectors and the interval specified by Ws contains the interval specified by Wp
(Ws(1) <Wp(1l) <Wp(2) <Ws(2)), then cheb2ord returns the order and cutoff frequencies of a
bandpass filter. The stopband of the filter ranges from 0 to Ws (1) and from Ws(2) to 1. The
passband ranges from Wp (1) toWp(2).

If Wp and Ws are both vectors and the interval specified by Wp contains the interval specified by Ws
Wp(1) <Ws (1) <Ws(2) <Wp(2)), then cheb2ord returns the order and cutoff frequencies of a
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bandstop filter. The stopband of the filter ranges from Ws (1) to Ws (2). The passband ranges from
0toWp(1l) and from Wp(2) to 1.

Use the following guide to specify filters of different types.

Filter Type Stopband and Passband Specifications

Filter Type Stopband and Passband Conditions Stopband Passband
Lowpass Wp < Ws, both scalars (Ws,1) (0,Wp)
Highpass Wp > Ws, both scalars (0,Ws) (Wp,1)
Bandpass The interval specified by Ws contains the |(0,Ws (1)) and |(Wp(1),Wp(2))
one specified by Wp Ws (1) < Wp(1l) < |(Ws(2),1)
Wp(2) < Ws(2)).
Bandstop The interval specified by Wp contains the |(0,Wp(1)) and |[(Ws(1),Ws(2))
one specified by Ws Wp (1) < Ws(1l) < |(Wp(2),1)
Ws(2) < Wp(2)).

Data Types: single | double

Note If your filter specifications call for a bandpass or bandstop filter with unequal ripple in each of
the passbands or stopbands, design separate lowpass and highpass filters and cascade the two filters
together.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, specified as a scalar or a two-element vector with values between 0 and 1
inclusive, with 1 corresponding to the normalized Nyquist frequency.
» For digital filters, stopband corner frequency is in radians per sample.

» For analog filters, stopband corner frequency is in radians per second and the stopband can be
infinite.

Note The values of Wp and Ws determine the filter type.

Rp — Passband ripple
scalar

Passband ripple, specified as a scalar in dB.

Data Types: single | double

Rs — Stopband attenuation
scalar

Stopband attenuation, specified as a scalar in dB.

Data Types: single | double
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Output Arguments

n — Lowest filter order
integer scalar

Lowest filter order, returned as an integer scalar.

Ws — Stopband corner frequency
scalar | two-element vector

Stopband corner frequency, returned as a scalar or a two-element vector. Use the output arguments n
and Ws with the cheby?2 function.

Algorithms

cheb2ord uses the Chebyshev lowpass filter order prediction formula described in [1]. The function
performs its calculations in the analog domain for both analog and digital cases. For the digital case,
it converts the frequency parameters to the s-domain before the order and natural frequency
estimation process, and then converts them back to the z-domain.

cheb2ord initially develops a lowpass filter prototype by transforming the stopband frequencies of
the desired filter to 1 rad/s (for low- and highpass filters) and to -1 and 1 rad/s (for bandpass and
bandstop filters). It then computes the minimum order and natural frequency required for a lowpass
filter to match the stopband specification exactly when using the values in the cheby?2 function.

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
buttord | cheblord | cheby2 | ellipord | kaiserord

Introduced before R2006a
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chebwin

Chebyshev window

Syntax

w = chebwin(L)

w = chebwin(L,r)

Description

w = chebwin(L) returns an L-point Chebyshev window.

w = chebwin(L, r) returns an L-point Chebyshev window using sidelobe magnitude factor r dB.
Examples

Chebyshev Window

Create a 64-point Chebyshev window with 100 dB of sidelobe attenuation. Display the result using
wvtool.

L = 64;

bw = chebwin(L);
wvtool (bw)
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Input Arguments

L — Window length
positive integer

Window length, specified as a positive integer.
Data Types: single | double

r — Sidelobe attenuation
100 dB (default) | positive real scalar

Sidelobe attenuation in dB, specified as a positive integer. The Chebyshev window has a Fourier
transform magnitude r dB below the mainlobe magnitude.

Data Types: single | double

Output Arguments

w — Chebyshev window
column vector

Chebyshev window, returned as a column vector.
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Note If you specify a one-point window (L = 1), the value 1 is returned.

More About

An artifact of the equiripple design method used in chebwin is the presence of impulses at the
endpoints of the time-domain response. The impulses are due to the constant-level sidelobes in the
frequency domain. The magnitude of the impulses are on the order of the size of the spectral
sidelobes. If the sidelobes are large, the effect at the endpoints may be significant. For more
information on this effect, see [2].

The equivalent noise bandwidth of a Chebyshev window does not grow monotonically with increasing
sidelobe attenuation when the attenuation is smaller than about 45 dB. For spectral analysis, use
larger sidelobe attenuation values, or, if you need to work with small attenuations, use a Kaiser
window.

References

[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing
Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979, program
5.2.

[2] harris, fredric j. Multirate Signal Processing for Communication Systems. Upper Saddle River, NJ:
Prentice Hall PTR, 2004, pp. 60-64.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Apps
Window Designer

Functions
WVTool | gausswin | kaiser | tukeywin

Introduced before R2006a
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Chebyshev Type I filter design

Syntax

[b,a] = chebyl(n,Rp,Wp)

[b,a] = chebyl(n,Rp,Wp, ftype)
[z,p,k] = chebyl( )
[A,B,C,D] = chebyl( )

[ 1 =chebyl( ,'s")
Description

[b,al] = chebyl(n,Rp,Wp) returns the transfer function coefficients of an nth-order lowpass
digital Chebyshev Type I filter with normalized passband edge frequency Wp and Rp decibels of peak-
to-peak passband ripple.

[b,al] = chebyl(n,Rp,Wp, ftype) designs a lowpass, highpass, bandpass, or bandstop Chebyshev
Type I filter, depending on the value of ftype and the number of elements of Wp. The resulting
bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-164 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = chebyl( ) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type I filter and returns its zeros, poles, and gain. This syntax can include any of the input arguments
in previous syntaxes.

[A,B,C,D] = chebyl( ) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type I filter and returns the matrices that specify its state-space representation.

[ ] = chebyl(  ,'s"') designs a lowpass, highpass, bandpass, or bandstop analog

CIFbyshev Type I filter with passband edge angular frequency Wp and Rp decibels of passband ripple.

Examples

Lowpass Chebyshev Type | Transfer Function

Design a 6th-order lowpass Chebyshev Type I filter with 10 dB of passband ripple and a passband
edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 .61 rad/sample. Plot
its magnitude and phase responses. Use it to filter a 1000-sample random signal.

[b,a] = chebyl(6,10,0.6);
freqz(b,a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Bandstop Chebyshev Type | Filter

Design a 6th-order Chebyshev Type I bandstop filter with normalized edge frequencies of 0.2m and
0.6m rad/sample and 5 dB of passband ripple. Plot its magnitude and phase responses. Use it to filter
random data.

[b,a] = chebyl(3,5,[0.2 0.6], " 'stop');
freqz(b,a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Chebyshev Type I Filter

Design a 9th-order highpass Chebyshev Type I filter with 0.5 dB of passband ripple and a passband
edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0 .61 rad/sample. Plot
the magnitude and phase responses. Convert the zeros, poles, and gain to second-order sections for
use by fvtool.

[z,p,k] = chebyl(9,0.5,300/500, 'high");
sos = zp2sos(z,p,k);
fvtool(sos, 'Analysis', 'freq")
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Magnitude Response (dB) and Phase Response
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Design a 20th-order Chebyshev Type I bandpass filter with a lower passband frequency of 500 Hz and
a higher passband frequency of 560 Hz. Specify a passband ripple of 3 dB and a sample rate of 1500
Hz. Use the state-space representation. Design an identical filter using designfilt.

[A,B,C,D] = chebyl(10,3,[500 560]1/750);

d = designfilt('bandpassiir','FilterOrder',20, ...
'PassbandFrequencyl', 500, 'PassbandFrequency2',560,
'PassbandRipple', 3, 'SampleRate', 1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses

using fvtool.

sos = ss2s0s(A,B,C,D);
fvt = fvtool(sos,d, 'Fs',1500);
legend(fvt, 'chebyl', 'designfilt"')
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Comparison of Analog IIR Lowpass Filters

Design a Sth-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2m
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

5 .

n ;
2e9;

.f:

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] zp2tf(zb,pb,kb);
[hb,wb] freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passhand
ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s");
[bl,al] = zp2tf(zl1l,pl,kl);
[h1,wl] = freqs(bl,al,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.
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[z2,p2,k2] = cheby2(n,30,2*pi*f,'s");
[b2,a2] zp2tf(z2,p2,k2);
[h2,w2] freqs(b2,a2,4096);

Design a Sth-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2%pi*f,'s");
[be,ael] zp2tf(ze,pe, ke);
[he,we] freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))

hold on

plot(wl/(2e9*pi),mag2db(abs(hl)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))

axis([0 4 -40 5])

grid

xlabel('Frequency (GHz)")
ylabel('Attenuation (dB)")
legend('butter', 'chebyl', 'cheby2','ellip')
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The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.
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Input Arguments

n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Rp — Peak-to-peak passband ripple
positive scalar

Peak-to-peak passband ripple, specified as a positive scalar expressed in decibels.

If your specification, ¢, is in linear units, you can convert it to decibels using Rp = 40 log;((1+¢)/(1-
2)).

Data Types: double

Wp — Passband edge frequency
scalar | two-element vector

Passband edge frequency, specified as a scalar or a two-element vector. The passband edge frequency
is the frequency at which the magnitude response of the filter is -Rp decibels. Smaller values of
passband ripple, Rp, result in wider transition bands.

+ IfWp is a scalar, then cheby1 designs a lowpass or highpass filter with edge frequency Wp.

If Wp is the two-element vector [wl w2], where wl < w2, then cheby1 designs a bandpass or
bandstop filter with lower edge frequency wl and higher edge frequency w2.

» For digital filters, the passband edge frequencies must lie between 0 and 1, where 1 corresponds
to the Nyquist rate—half the sample rate or i rad/sample.

For analog filters, the passband edge frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
‘low' | 'bandpass' | 'high' | 'stop"’

Filter type, specified as one of the following:

* 'low' specifies a lowpass filter with passband edge frequency Wp. ' low' is the default for scalar
Wp.
* 'high' specifies a highpass filter with passband edge frequency Wp.

* 'bandpass' specifies a bandpass filter of order 2n if Wp is a two-element vector. 'bandpass' is
the default when Wp has two elements.

* 'stop' specifies a bandstop filter of order 2n if Wp is a two-element vector.
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Output Arguments

b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

+ For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B@ _ b(1)+b(2) 271 + - + b(n+1)z 7"
AR a()+a@)z7 1+ - +am+1)z "’

» For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B6) _ bA)s" +Db(2)s" "1+ - +b(n+1)
AlS)  a(l)s"+a)s" "1+ +am+l)’

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

» For digital filters, the transfer function is expressed in terms of z, p, and k as

1-z) 2z hH(1-z2)z7H(1 -zm)z™h
(1-p)2~H (A -p@)z~H-(1 - pm)z~
» For analog filters, the transfer function is expressed in terms of z, p, and k as

(5= 2(1) (s — 2(2) (s — 2(n))
HE) = KM = p2)~G-pm)

Data Types: double

H(Zz)=k

S —
S —

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then Aism x m, Bism x 1, Cis 1 X m, and D
is1x 1.

» For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through
x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k) +Du(k).
» For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x=Ax+Bu
y=Cx+Du.
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Data Types: double

More About

Limitations
Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z, p, k] output with zp2sos. If you design the filter using the [b, a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

n==~6;

Rp = 0.1;

Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass’;

% Transfer function design
[b,al = chebyl(n,Rp,Wn,ftype); % This filter is unstable

% Zero-pole-gain design
[z,p,k] = chebyl(n,Rp,Wn,ftype);
sos = zp2sos(z,p,k);

% Plot and compare the results

hfvt = fvtool(b,a,sos, 'FrequencyScale', 'log');
legend (hfvt, 'TF Design', 'ZPK Design')
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Algorithms

Chebyshev Type I filters are equiripple in the passband and monotonic in the stopband. Type I filters
roll off faster than Type II filters, but at the expense of greater deviation from unity in the passband.

cheby1l uses a five-step algorithm:

It finds the lowpass analog prototype poles, zeros, and gain using the function cheblap.
It converts the poles, zeros, and gain into state-space form.

If required, it uses a state-space transformation to convert the lowpass filter to a highpass,
bandpass, or bandstop filter with the desired frequency constraints.

4  For digital filter design, it uses bilinear to convert the analog filter into a digital filter through
a bilinear transformation with frequency prewarping. Careful frequency adjustment enables the
analog filters and the digital filters to have the same frequency response magnitude at Wp or wl
and w2.

5 It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besself | butter | cheblap | cheblord | cheby2 | designfilt |ellip| filter | sosfilt

Introduced before R2006a
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cheby?2

Chebyshev Type II filter design

cheby2(n,Rs,Ws)
[b,al cheby2(n,Rs,Ws, ftype)

,kl = cheby2( )
,C,D] = cheby2( )

[ 1 =cheby2( ,'s")

Description

[b,al] = cheby2(n,Rs,Ws) returns the transfer function coefficients of an nth-order lowpass
digital Chebyshev Type II filter with normalized stopband edge frequency Ws and Rs decibels of
stopband attenuation down from the peak passband value.

[b,al] = cheby2(n,Rs,Ws, ftype) designs a lowpass, highpass, bandpass, or bandstop Chebyshev
Type II filter, depending on the value of ftype and the number of elements of Ws. The resulting
bandpass and bandstop designs are of order 2n.

Note: See “Limitations” on page 1-175 for information about numerical issues that affect forming
the transfer function.

[z,p,k] = cheby2( ) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type II filter and returns its zeros, poles, and gain. This syntax can include any of the input
arguments in previous syntaxes.

[A,B,C,D] = cheby2( ) designs a lowpass, highpass, bandpass, or bandstop digital Chebyshev
Type II filter and returns the matrices that specify its state-space representation.

[ 1 = cheby2(  ,'s') designs a lowpass, highpass, bandpass, or bandstop analog

Chebyshev Type II filter with stopband edge angular frequency Ws and Rs decibels of stopband
attenuation.

Examples

Lowpass Chebyshev Type Il Transfer Function

Design a 6th-order lowpass Chebyshev Type II filter with 40 dB of stopband attenuation and a
stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0. 61 rad/
sample. Plot its magnitude and phase responses. Use it to filter a 1000-sample random signal.

[b,a]l = cheby2(6,40,0.6);
fregz(b,a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Bandstop Chebyshev Type Il Filter

Design a 6th-order Chebyshev Type II bandstop filter with normalized edge frequencies of 0. 21 and
0.6m rad/sample and 50 dB of stopband attenuation. Plot its magnitude and phase responses. Use it

to filter random data.

[b,a]l = cheby2(3,50,[0.2 0.6], 'stop');
freqz(b,a)
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dataln = randn(1000,1);
dataOut = filter(b,a,dataln);

Highpass Chebyshev Type Il Filter

Design a 9th-order highpass Chebyshev Type II filter with 20 dB of stopband attenuation and a

stopband edge frequency of 300 Hz, which, for data sampled at 1000 Hz, corresponds to 0. 61 rad/
sample. Plot the magnitude and phase responses. Convert the zeros, poles, and gain to second-order

sections for use by fvtool.

[z,p,k] = cheby2(9,20,300/500, 'high');
sos = zp2sos(z,p,k);
fvtool(sos, 'Analysis', 'freq")
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Magnitude Response (dB) and Phase Response
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Bandpass Chebyshev Type Il Filter

Design a 20th-order Chebyshev Type II bandpass filter with a lower stopband frequency of 500 Hz
and a higher stopband frequency of 560 Hz. Specify a stopband attenuation of 40 dB and a sample
rate of 1500 Hz. Use the state-space representation. Design an identical filter using designfilt.

[A,B,C,D] = cheby2(10,40,[500 560]1/750);

d = designfilt('bandpassiir','FilterOrder',20, ...
'StopbandFrequencyl',500, 'StopbandFrequency2',560,
'StopbandAttenuation', 40, 'SampleRate',1500);

Convert the state-space representation to second-order sections. Visualize the frequency responses
using fvtool.

sos = ss2sos(A,B,C,D);

fvt = fvtool(sos,d, 'Fs',1500);
legend(fvt, 'cheby2', 'designfilt"')
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Comparison of Analog IIR Lowpass Filters

Design a Sth-order analog Butterworth lowpass filter with a cutoff frequency of 2 GHz. Multiply by 2m
to convert the frequency to radians per second. Compute the frequency response of the filter at 4096
points.

5 .

n ;
2e9;

.f:

[zb,pb,kb] = butter(n,2*pi*f,'s');
[bb,ab] zp2tf(zb,pb,kb);
[hb,wb] freqs(bb,ab,4096);

Design a 5th-order Chebyshev Type I filter with the same edge frequency and 3 dB of passhand
ripple. Compute its frequency response.

[z1,pl,k1] = chebyl(n,3,2*pi*f,'s");

[bl,al] = zp2tf(zl1l,pl,kl);
[h1,wl] = freqs(bl,al,4096);

Design a 5th-order Chebyshev Type II filter with the same edge frequency and 30 dB of stopband
attenuation. Compute its frequency response.
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[z2,p2,k2] = cheby2(n,30,2*pi*f,'s");
[b2,a2] zp2tf(z2,p2,k2);
[h2,w2] freqs(b2,a2,4096);

Design a Sth-order elliptic filter with the same edge frequency, 3 dB of passband ripple, and 30 dB of
stopband attenuation. Compute its frequency response.

[ze,pe,ke] = ellip(n,3,30,2%pi*f,'s");
[be,ael] zp2tf(ze,pe, ke);
[he,we] freqs(be,ae,4096);

Plot the attenuation in decibels. Express the frequency in gigahertz. Compare the filters.

plot(wb/(2e9*pi),mag2db(abs(hb)))

hold on

plot(wl/(2e9*pi),mag2db(abs(hl)))
plot(w2/(2e9*pi),mag2db(abs(h2)))
plot(we/(2e9*pi),mag2db(abs(he)))

axis([0 4 -40 5])

grid

xlabel('Frequency (GHz)")
ylabel('Attenuation (dB)")
legend('butter', 'chebyl', 'cheby2','ellip')

butter
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The Butterworth and Chebyshev Type II filters have flat passbands and wide transition bands. The
Chebyshev Type I and elliptic filters roll off faster but have passband ripple. The frequency input to
the Chebyshev Type II design function sets the beginning of the stopband rather than the end of the
passband.
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Input Arguments

n — Filter order
integer scalar

Filter order, specified as an integer scalar. For bandpass and bandstop designs, n represents one-half
the filter order.
Data Types: double

Rs — Stopband attenuation
positive scalar

Stopband attenuation down from the peak passband value, specified as a positive scalar expressed in
decibels.

If your specification, ¢, is in linear units, you can convert it to decibels using Rs = -20 log¢.

Data Types: double

Ws — Stopband edge frequency
scalar | two-element vector

Stopband edge frequency, specified as a scalar or a two-element vector. The stopband edge frequency
is the frequency at which the magnitude response of the filter is -Rs decibels. Larger values of
stopband attenuation, Rs, result in wider transition bands.

* IfWs is a scalar, then cheby?2 designs a lowpass or highpass filter with edge frequency Ws.
If Ws is the two-element vector [wl w2], where wl < w2, then cheby?2 designs a bandpass or
bandstop filter with lower edge frequency wl and higher edge frequency w2.

» For digital filters, the stopband edge frequencies must lie between 0 and 1, where 1 corresponds
to the Nyquist rate—half the sample rate or m rad/sample.

For analog filters, the stopband edge frequencies must be expressed in radians per second and
can take on any positive value.

Data Types: double

ftype — Filter type
‘"low' | 'bandpass' | 'high' | 'stop"

Filter type, specified as one of the following:

* 'low' specifies a lowpass filter with stopband edge frequency Ws. ' Low' is the default for scalar
Ws.
* 'high' specifies a highpass filter with stopband edge frequency Ws.

* 'bandpass' specifies a bandpass filter of order 2n if Ws is a two-element vector. 'bandpass' is
the default when Ws has two elements.

* 'stop' specifies a bandstop filter of order 2n if Ws is a two-element vector.
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Output Arguments

b,a — Transfer function coefficients
row vectors

Transfer function coefficients of the filter, returned as row vectors of length n + 1 for lowpass and
highpass filters and 2n + 1 for bandpass and bandstop filters.

+ For digital filters, the transfer function is expressed in terms of b and a as

H(z) = B@ _ b(1)+b(2) 271 + - + b(n+1)z 7"
AR a()+a@)z7 1+ - +am+1)z "’

» For analog filters, the transfer function is expressed in terms of b and a as

H(s) = B6) _ bA)s" +Db(2)s" "1+ - +b(n+1)
AlS)  a(l)s"+a)s" "1+ +am+l)’

Data Types: double

z,p,k — Zeros, poles, and gain
column vectors, scalar

Zeros, poles, and gain of the filter, returned as two column vectors of length n (2n for bandpass and
bandstop designs) and a scalar.

» For digital filters, the transfer function is expressed in terms of z, p, and k as

1-z) 2z hH(1-z2)z7H(1 -zm)z™h
(1-p)2~H (A -p@)z~H-(1 - pm)z~
» For analog filters, the transfer function is expressed in terms of z, p, and k as

(5= 2(1) (s — 2(2) (s — 2(n))
HE) = KM = p2)~G-pm)

Data Types: double

H(Zz)=k

S —
S —

A,B,C,D — State-space matrices
matrices

State-space representation of the filter, returned as matrices. If m = n for lowpass and highpass
designs and m = 2n for bandpass and bandstop filters, then Aism x m, Bism x 1, Cis 1 X m, and D
is1x 1.

» For digital filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)+Du(k).
» For analog filters, the state-space matrices relate the state vector x, the input u, and the output y
through

x=Ax+Bu
y=Cx+Du.
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Data Types: double

More About

Limitations
Numerical Instability of Transfer Function Syntax

In general, use the [z, p, k] syntax to design IIR filters. To analyze or implement your filter, you can
then use the [z, p, k] output with zp2sos. If you design the filter using the [b, a] syntax, you might
encounter numerical problems. These problems are due to round-off errors and can occur for n as low
as 4. The following example illustrates this limitation.

n==~6;

Rs = 80;

Wn = [2.5e6 29e6]/500e6;
ftype = 'bandpass’;

% Transfer function design
[b,al = cheby2(n,Rs,Wn, ftype); % This filter is unstable

% Zero-pole-gain design
[z,p,k] = cheby2(n,Rs,Wn, ftype);
sos = zp2sos(z,p,k);

% Plot and compare the results

hfvt = fvtool(b,a,sos, 'FrequencyScale', 'log');
legend (hfvt, 'TF Design', 'ZPK Design')
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Algorithms

Chebyshev Type II filters are monotonic in the passband and equiripple in the stopband. Type II

10°3 1072 1077
Mormalized Frequency (=« rad/sample)

filters do not roll off as fast as Type I filters, but are free of passband ripple.

cheby?2 uses a five-step algorithm:

It finds the lowpass analog prototype poles, zeros, and gain using the function cheb2ap.

It converts poles, zeros, and gain into state-space form.

If required, it uses a state-space transformation to convert the lowpass filter into a bandpass,

highpass, or bandstop filter with the desired frequency constraints.

For digital filter design, it uses bilinear to convert the analog filter into a digital filter through
a bilinear transformation with frequency prewarping. Careful frequency adjustment the analog
filters and the digital filters to have the same frequency response magnitude at Ws or wl and w2.

It converts the state-space filter back to transfer function or zero-pole-gain form, as required.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
besself | butter | cheblord | cheb2ap | chebyl |designfilt |ellip| filter | sosfilt

Introduced before R2006a
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chirp

Swept-frequency cosine

Syntax

y = chirp(t,f0,tl,f1)

y = chirp(t,f0,tl,fl,method)

y = chirp(t,f0,tl,fl,method,phi)

y = chirp(t,f0,tl,fl, 'quadratic',phi, shape)
y = chirp(__ ,cplx)

Description

y = chirp(t,f0,tl,fl) generates samples of a linear swept-frequency cosine signal at the time
instances defined in array t. The instantaneous frequency at time 0 is T0 and the instantaneous
frequency at time t1is f1.

y chirp(t,f0,tl,f1l,method) specifies an alternative sweep method option.

chirp(t,f0,tl,f1,method, phi) specifies the initial phase.

y

y = chirp(t,f0,t1,fl, 'quadratic',phi, shape) specifies the shape of the spectrogram of a
quadratic swept-frequency signal.

y = chirp(__ ,cplx) returns a real chirp if cplx is specified as ' real' and returns a complex
chirp if cplx is specified as ' complex"'.

Examples

Linear Chirp

Generate a chirp with linear instantaneous frequency deviation. The chirp is sampled at 1 kHz for 2
seconds. The instantaneous frequency is 0 at t = 0 and crosses 250 Hz at t = 1 second.

t
y

0:1/1e3:2;
chirp(t,0,1,250);

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,le3, 'spectrogram', 'TimeResolution',0.1,
'OverlapPercent',99, 'Leakage',0.85)
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Quadratic Chirp

Generate a chirp with quadratic instantaneous frequency deviation. The chirp is sampled at 1 kHz for
2 seconds. The instantaneous frequency is 100 Hz at t = 0 and crosses 200 Hz at t = 1 second.

0:1/1e3:2;
chirp(t,100,1,200, 'quadratic');

t
y

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage

of 0.85.

pspectrum(y,le3, 'spectrogram', 'TimeResolution',0.1,
'OverlapPercent',99, 'Leakage',0.85)
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Convex Quadratic Chirp

Generate a convex quadratic chirp sampled at 1 kHz for 2 seconds. The instantaneous frequency is
400 Hz at t = 0 and crosses 300 Hz at t = 1 second.

t =0:1/1e3:2;
fo = 400;
fl = 300;

y = chirp(t,fo,1,fl, 'quadratic',[], 'convex');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage

of 0.85.

pspectrum(y,le3, 'spectrogram', 'TimeResolution',0.1,
'OverlapPercent',99, 'Leakage',0.85)
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Symmetric Concave Quadratic Chirp

Generate a concave quadratic chirp sampled at 1 kHz for 4 seconds. Specify the time vector so that
the instantaneous frequency is symmetric about the halfway point of the sampling interval, with a
minimum frequency of 100 Hz and a maximum frequency of 500 Hz.

t = -2:1/1e3:2;

fo = 100;

fl = 200;

y = chirp(t,fo,1,fl, 'quadratic',[], 'concave');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.1 second. Specify 99% of overlap between adjoining segments and a spectral leakage

of 0.85.

pspectrum(y,t, 'spectrogram', 'TimeResolution',0.1,
'OverlapPercent',99, 'Leakage',0.85)
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Logarithmic Chirp

Generate a logarithmic chirp sampled at 1 kHz for 10 seconds. The instantaneous frequency is 10 Hz
initially and 400 Hz at the end.

t = 0:1/1e3:10;

fo = 10;

fl = 400;

y = chirp(t,fo,10,f1, 'logarithmic');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time
resolution is 0.2 second. Specify 99% of overlap between adjoining segments and a spectral leakage

of 0.85.

pspectrum(y,t, 'spectrogram', 'TimeResolution',0.2,
'OverlapPercent',99, 'Leakage',0.85)
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Use a logarithmic scale for the frequency axis. The spectrogram becomes a line, with high
uncertainty at low frequencies.

ax = gca;
ax.YScale = 'log’';
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Complex Chirp

Generate a complex linear chirp sampled at 1 kHz for 10 seconds. The instantaneous frequency is -
200 Hz initially and 300 Hz at the end. The initial phase is zero.

= 0:1/1e3:10;
fo = -200;
fl = 300;

y = chirp(t,fo,t(end),fl, 'linear',0, 'complex');

Compute and plot the spectrogram of the chirp. Divide the signal into segments such that the time

resolution is 0.2 second. Specify 99% of overlap between adjoining segments and a spectral leakage
of 0.85.

pspectrum(y,t, 'spectrogram', 'TimeResolution',0.2,
'OverlapPercent',99, 'Leakage',0.85)
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Verify that a complex chirp has real and imaginary parts that are equal but with 90° phase difference.
x = chirp(t,fo,t(end),fl, 'linear',0) + 1lj*chirp(t,fo,t(end),fl, 'linear',-90);

pspectrum(x,t, 'spectrogram', 'TimeResolution',0.2,
'OverlapPercent',99, 'Leakage',0.85)
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Input Arguments

t — Time array
vector

Time array, specified as a vector.

Data Types: single | double

f0 — Instantaneous frequency at time 0
0 (default) | real scalar in Hz

Initial instantaneous frequency at time 0, specified as a real scalar expressed in Hz.

Data Types: single | double

t1l — Reference time
1 (default) | positive scalar in seconds

Reference time, specified as a positive scalar expressed in seconds.

Data Types: single | double

f1 — Instantaneous frequency at time tl
100 (default) | real scalar in Hz

Instantaneous frequency at time t1, specified as a real scalar expressed in Hz.

Power (dB}
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Data Types: single | double

method — Sweep method
‘linear’' (default) | 'quadratic' | 'logarithmic'

Sweep method, specified as 'linear', 'quadratic', or 'logarithmic"'.
* 'linear' — Specifies an instantaneous frequency sweep fi(t) given by
fit) = fo + Bt,
where
B=(f1-folt

and the default value for f; is 0. The coefficient  ensures that the desired frequency breakpoint f;
at time t; is maintained.

* 'quadratic' — Specifies an instantaneous frequency sweep fi(t) given by
fit) = fo + Bt?,
where
B =(f1—folt12

and the default value for f; is 0. If f > f; (downsweep), the default shape is convex. If f; < f;
(upsweep), the default shape is concave.

* 'logarithmic' — Specifies an instantaneous frequency sweep fi(t) given by
fil® = fox B,
where

1
-

and the default value for f; is 106,

phi — Initial phase
0 (default) | positive scalar in degrees

Initial phase, specified as a positive scalar expressed in degrees.

Data Types: single | double

shape — Spectrogram shape of quadratic chirp
"convex' | 'concave'

Spectrogram shape of quadratic chirp, specified as 'convex' or 'concave'. shape describes the

shape of the parabola with respect to the positive frequency axis. If not specified, shape is ' convex'
for the downsweep case with f; > f;, and 'concave' for the upsweep case with f; < f;.
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Convex downsweep shape Concave upsweep shape

cplx — Output complexity
'real' (default) | 'complex'

Output complexity, specified as 'real' or 'complex'.

Output Arguments

y — Swept-frequency cosine signal
vector

Swept-frequency cosine signal, returned as a vector.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cos |diric | gauspuls | pulstran| rectpuls | sawtooth|sin|sinc | square | tripuls

Introduced before R2006a
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convimtx

Convolution matrix

Syntax

A = convmtx(h,n)

Description

A = convmtx(h,n) returns the convolution matrix, A, such that the product of A and an n-element
vector, X, is the convolution of h and x.

Examples

Efficient Computation of Convolution

Computing a convolution using conv when the signals are vectors is generally more efficient than
using convmtx. For multichannel signals, convmtx might be more efficient.

Compute the convolution of two random vectors, a and b, using both conv and convmtx. The signals
have 1000 samples each. Compare the times spent by the two functions. Eliminate random
fluctuations by repeating the calculation 30 times and averaging.

30;
1000;
1000;

=
Q
nnnu

for kj = 1:Nt

a = randn(Na,1);
b = randn(Nb,1);
tic

n = conv(a,b);
tcnv = tcnv+toc;

tic
c = convmtx(b,Na);
d = c*a;

tmtx = tmtx+toc;
end

tlcol = [tcnv tmtx]/Nt
tlcol = 1Ix2

0.0008 0.0225
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tlrat

tcnv\tmtx

tlrat 28.5722

conv is about two orders of magnitude more efficient.

Repeat the exercise for the case where a is a multichannel signal with 1000 channels. Optimize
conv's performance by preallocating.

Nchan = 1000;
tcnv = 0;
tmtx = 0;

n = zeros(Na+Nb-1,Nchan);

for kj = 1:Nt
a randn(Na,Nchan) ;
b randn(Nb,1);

tic
for k = 1:Nchan

n(:,k) = conv(a(:,k),b);
end

tcnv = tcnv+toc;

tic
c = convmtx(b,Na);
d = c*a;

tmtx = tmtx+toc;
end

tmcol = [tcnv tmtx]/Nt
tmcol = Ix2

0.4232 0.0642

tmrat tecnv/tmtx

tmrat = 6.5898

convmtx is about three times as efficient as conv.

Input Arguments

h — Input vector
vector

Input vector, specified as a row or column.

Data Types: single | double

n — Length of vector to convolve
positive integer
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Length of vector to convolve, specified as a positive integer.

* If his a column vector of length m, A is (m+n-1)-by-n, and the product of A and a column vector,
x, of length n is the convolution of h and x.

» If his a row vector of length m, A is n-by-(m+n-1), and the product of a row vector, x, of length n
with A is the convolution of h and x.

Output Arguments

A — Convolution matrix
matrix

Convolution matrix of input h and the vector X, returned as a matrix.

Algorithms

* convmtx uses the function toeplitz to generate the convolution matrix.
* convmtx handles edge conditions by zero padding.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
conv | conv2 | convn | corrmtx | dftmtx

Introduced before R2006a
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corrmtx

Data matrix for autocorrelation matrix estimation

Syntax
H = corrmtx(x,m)

H = corrmtx(x,m,method)
[H,r] = corrmtx( )

Description

H = corrmtx(x,m) returns an (n+m)-by-(m+1) rectangular Toeplitz matrix H = H such that H'H is a
biased estimate of the autocorrelation matrix for the input vector x. n is the length of x, m is the
prediction model order, and H is the conjugate transpose of H.

H = corrmtx(x,m,method) computes the matrix H according to the method specified by method.

[H,r] = corrmtx( ) also returns the (m + 1)-by-(m + 1) autocorrelation matrix estimate r,
computed as H'H, for any of the previous syntaxes.

Examples

Modified Data and Autocorrelation Matrices

Generate a signal composed of three complex exponentials embedded in white Gaussian noise.
Compute the data and autocorrelation matrices using the 'modified' method.

n =0:99;

s = exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(1l,100);
m= 12;

[X,R] = corrmtx(s,m, 'modified');

Plot the real and imaginary parts of the autocorrelation matrix.

[A,B] = ndgrid(l:m+1);
subplot(2,1,1)
plot3(A,B,real(R))
title('Re(R)")
subplot(2,1,2)
plot3(A,B,imag(R))
title('Im(R)")
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Input Arguments

x — Input data
vector

Input data, specified as a vector.

m — Prediction model order
positive real integer

Prediction model order, specified as a positive real integer.

method — Matrix computation method
'autocorrelation' (default) | 'prewindowed' | 'postwindowed' | 'covariance’ |
'modified’

Matrix computation method, specified as 'autocorrelation', 'prewindowed’,
'postwindowed’, 'covariance' or 'modified’.

+ 'autocorrelation': (default) His the (n + m)-by-(m + 1) rectangular Toeplitz matrix that
generates an autocorrelation estimate for the length-n data vector x, derived using prewindowed
and postwindowed data, based on an mth-order prediction model. The matrix can be used to
perform autoregressive parameter estimation using the Yule-Walker method. For more details, see
aryule.
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* 'prewindowed': H is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using prewindowed data, based on
an mth-order prediction model.

* 'postwindowed': H is the n-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector x, derived using postwindowed data, based
on an mth-order prediction model.

* 'covariance': His the (n - m)-by-(m + 1) rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector X, derived using nonwindowed data, based
on an mth-order prediction model. The matrix can be used to perform autoregressive parameter
estimation using the covariance method. For more details, see arcov.

* 'modified':H isthe 2(n - m)-by-(m + 1) modified rectangular Toeplitz matrix that generates an
autocorrelation estimate for the length-n data vector X, derived using forward and backward
prediction error estimates, based on an mth-order prediction model. The matrix can be used to
perform autoregressive parameter estimation using the modified covariance method. For more
details, see armcov.

Output Arguments

H — Data matrix
matrix

Data matrix, returned for autocorrelation matrix estimation. The size of H depends on the matrix
computation method specified in method.

r — Biased autocorrelation matrix
matrix

Biased autocorrelation matrix, returned as a (m + 1)-by-(m + 1) rectangular Toeplitz matrix.

Algorithms

The Toeplitz data matrix computed by corrmtx depends on the method you select. The matrix
determined by the autocorrelation (default) method is:



corrmtx

=
Il
Si-

x(1) 0 0
x(2) x(1) 0
x(3) x(2) 0
x(m) x(m.— 1) x(1)
x(m+1) x(m) x(2)
x(m+2) x(m+1) - x(3)
x(n — 1) x(n=2) -~ x(n — m)
x(n) x(n-=1) - x(n—-m+1)
0 x(n) - x(n—-m+2)
0 0 - xn-1)
0 0 x(n)
0 0 0

[}

x(n—m-1)
x(n —m)
x(n—-m+1)

x(n — 2)
x(n—-1)
x(n)

In the matrix, m is the same as the input argument m to corrmtx and n is length(x). Variations of

this matrix are used to return the output H of corrmtx for each method:

"autocorrelation' — (default) H = H.

"prewindowed' — H is the n-by-(m + 1) submatrix of H whose first row is [x(1) ... 0] and whose
last row is [x(n) ... x(n - m)].

'postwindowed' — His the n-by-(m + 1) submatrix of H whose first row is [x(m + 1) ... x(1)] and
whose last row is [0 ... x(n)].

'covariance' — His the (n - m)-by-(m + 1) submatrix of H whose first row is [x(m + 1) ... x(1)]
and whose last row is [x(n) ... x(n - m)].

'modified' — His the 2(n - m)-by-(m + 1) matrix H,,,q defined by

x(m+1) - x(1)
. 1 x(n) x(n—m)
mod =AM —m)| x*(1) - x*(m+1)
X*(n—m) ~  x*(n)
References

[1] Marple, S. Lawrence. Digital Spectral Analysis: With Applications. Prentice-Hall Signal Processing
Series. Englewood Cliffs, N.J: Prentice-Hall, 1987.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
peig | pmusic | rooteig | rootmusic | xcorr

Introduced before R2006a
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cpsd

Cross power spectral density

Syntax

pxy = cpsd(x,y)

pxXy
pxXy
pxXy
pxy

[pxy,w]
[pxy, f]

[pxy,w]
[pxy, f]

[

cpsd(x,y,window)
cpsd(x,y,window, noverlap)
cpsd(x,y,window, noverlap,nfft)

cpsd(_ ,'mimo")

cpsd( )
cpsd(_ ,fs)

cpsd(x,y,window, noverlap,w)
cpsd(x,y,window, noverlap, T, fs)

1 = cpsd(x,y,  ,freqrange)

cpsd( )

Description

pxy = cpsd(x,y) estimates the cross power spectral density (CPSD) of two discrete-time signals, X
and y, using Welch’s averaged, modified periodogram method of spectral estimation.

If x and y are both vectors, they must have the same length.

If one of the signals is a matrix and the other is a vector, then the length of the vector must equal
the number of rows in the matrix. The function expands the vector and returns a matrix of column-
by-column cross power spectral density estimates.

If x and y are matrices with the same number of rows but different numbers of columns, then
cpsd returns a three-dimensional array, pxy, containing cross power spectral density estimates
for all combinations of input columns. Each column of pxy corresponds to a column of X, and each
page corresponds to a column of y: pxy(:,m,n) = cpsd(x(:,m),y(:,n)).

If x and y are matrices of equal size, then cpsd operates column-wise: pxy(:,n) =
cpsd(x(:,n),y(:,n)). To obtain a multi-input/multi-output array, append 'mimo’ to the
argument list.

For real x and y, cpsd returns a one-sided CPSD. For complex x or y, cpsd returns a two-sided
CPSD.

pXy

cpsd(x,y,window) uses window to divide x and y into segments and perform windowing.

pxy = cpsd(x,y,window,noverlap) uses noverlap samples of overlap between adjoining
segments.

pxy = cpsd(x,y,window,noverlap,nfft) uses nfft sampling points to calculate the discrete
Fourier transform.
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pxy = cpsd( , 'mimo') computes a multi-input/multi-output array of cross power spectral
density estimates. This syntax can include any combination of input arguments from previous
syntaxes.

[pxy,w] = cpsd( ) returns a vector of normalized frequencies, w, at which the cross power
spectral density is estimated.

[pxy,f]l = cpsd( ___ ,fs) returns a vector of frequencies, f, expressed in terms of the sample
rate, fs, at which the cross power spectral density is estimated. fs must be the sixth numeric input
to cpsd. To input a sample rate and still use the default values of the preceding optional arguments,
specify these arguments as empty, [].

[pxy,w] = cpsd(x,y,window, noverlap,w) returns the cross power spectral density estimates
at the normalized frequencies specified in w.

[pxy,f]l = cpsd(x,y,window,noverlap, f, fs) returns the cross power spectral density
estimates at the frequencies specified in f.

[ 1 = cpsd(x,y, ,fregrange) returns the cross power spectral density estimate over the
frequency range specified by freqrange. Valid options for freqrange are 'onesided’,
"twosided', and 'centered’.

cpsd( ) with no output arguments plots the cross power spectral density estimate in the current

figure window.

Examples

Cross Power Spectral Density of Colored Noise Signals

Generate two colored noise signals and plot their cross power spectral density. Specify a length-1024
FFT and a 500-point triangular window with no overlap.

r = randn(16384,1);

hx = firl(30,0.2,rectwin(31));
x = filter(hx,1,r);

hy = ones(1,10)/sqrt(10);
y = filter(hy,1,r);

cpsd(x,y,triang(500),250,1024)
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SISO and MIMO Cross Power Spectral Densities

Generate two two-channel sinusoids sampled at 1 kHz for 1 second. The channels of the first signal
have frequencies of 200 Hz and 300 Hz. The channels of the second signal have frequencies of 300
Hz and 400 Hz. Both signals are embedded in unit-variance white Gaussian noise.

fs = 1le3;

t = (0:1/fs:1-1/fs)';

g = 2*sin(2*pi*[200 300].*t);
g = g+randn(size(q));

2*sin(2*pi*[300 400].*t);
r+randn(size(r));

r
r

Compute the cross power spectral density of the two signals. Use a 256-sample Bartlett window to
divide the signals into segments and window the segments. Specify 128 samples of overlap between
adjoining segments and 2048 DFT points. Use the built-in functionality of cpsd to plot the result.

cpsd(q, r,bartlett(256),128,2048,fs)
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By default, cpsd works column-by-column on matrix inputs of the same size. Each channel peaks at
the frequencies of the original sinusoids.

Repeat the calculation, but now append 'mimo' to the list of arguments.

cpsd(q, r,bartlett(256),128,2048,fs, ‘'mimo")
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Welch Cross Power Spectral Density Estimate
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When called with the 'mimo ' option, cpsd returns a three-dimensional array containing cross power
spectral density estimates for all combinations of input columns. The estimate of the second channel
of q and the first channel of r shows an enhanced peak at the common frequency of 300 Hz.

Cross Spectrum Phase of Lagged Sinusoids

Generate two 100 Hz sinusoidal signals sampled at 1 kHz for 296 ms. One of the sinusoids lags the
other by 2.5 ms, equivalent to a phase lag of /2. Both signals are embedded in white Gaussian noise
of variance 1/42.

Fs = 1000;
t =0:1/Fs:0.296;

= COos(2*pi*t*100)+0.25*randn(size(t));

X
tau = 1/400;
y = COS(2*pi*100*(t-tau))+0.25*randn(size(t));

Compute and plot the magnitude of the cross power spectral density. Use the default settings for
cpsd. The magnitude peaks at the frequency where there is significant coherence between the
signals.

cpsd(x,y, [1,[1,[1,Fs)
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Plot magnitude-squared coherence function and the phase of the cross spectrum. The ordinate at the
high-coherence frequency corresponds to the phase lag between the sinusoids.

[Cxy,F] = mscohere(x,y,[],[1,[1,Fs);
[Pxy,F] = cpsd(x,y,[],[],[],Fs);
subplot(2,1,1)

plot(F,Cxy)

title('Magnitude-Squared Coherence')

subplot(2,1,2)
plot(F,angle(Pxy))

hold on
plot(F,2*pi*100*tau*ones(size(F)),'--")
hold off

xlabel('Hz")

ylabel('\Theta(f)")
title('Cross Spectrum Phase')
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Cross Power Spectral Density of Exponential Sequences

Generate two N-sample exponential sequences, x, = a™ and x;, = b", with n = 0. Specifya = 0.8,
b=0.9, and a small N to see finite-size effects.

N = 10;
n=0:N-1;
a =0.8;

b =0.9;
Xa = a.”™n;
xb = b.”n;

Compute and plot the cross power spectral density of the sequences over the complete interval of
normalized frequencies, [ — 1, 7]. Specify a rectangular window of length N and no overlap between

segments.
w = -pi:1/1000:pi;

wind rectwin(N);
nove 0;

[pxx,f] = cpsd(xa,xb,wind,nove,w);

The cross power spectrum of the two sequences has an analytic expression for large N:
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Convert this expression to a cross power spectral density by dividing it by 2mN. Compare the results.
The ripple in the cpsd result is a consequence of windowing.

nfac = 2*pi*N;

1./(1-a*exp(-1j*w));
1./(1-b*exp( 1lj*w));

X
Y
R = X.*Y/nfac;

semilogy(f/pi,abs(pxx))
hold on
semilogy(w/pi,abs(R))
hold off

legend('cpsd', "Analytic"')
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Repeat the calculation with N = 25. The curves agree to six figures for N as small as 100.

N = 25;

n=0:N-1;
Xa = a.”™n;
xb = b.”"n;

wind = rectwin(N);
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[pxx,f] = cpsd(xa,xb,wind,nove,w);
R = X.*Y/(2*pi*N);

semilogy (f/pi,abs(pxx))
hold on
semilogy(w/pi,abs(R))
hold off

legend('cpsd', "Analytic')
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Dial Tone Recognition
Use cross power spectral density to identify a highly corrupted tone.

The sound signals generated when you dial a number or symbol on a digital phone are sums of
sinusoids with frequencies taken from two different groups. Each pair of tones contains one
frequency of the low group (697 Hz, 770 Hz, 852 Hz, or 941 Hz) and one frequency of the high group
(1209 Hz, 1336 Hz, or 1477 Hz).
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Generate signals corresponding to all the symbols. Sample each tone at 4 kHz for half a second.
Prepare a reference table.

fs = 4e3;

t =0:1/fs:0.5-1/Fs;
nmS=[I1I;I2I;I3I;I4I;I5I;I6I;I7I;I8I;I9I;I*I;I0I;I#I];
ver = [697 770 852 941];

hor = [1209 1336 1477];

\; length(ver);

h length(hor);
for k = 1:v
for 1 = 1:h
idx = h*(k-1)+1;
tone = sum(sin(2*pi*[ver(k);hor(1)].*t))";
tones(:,idx) = tone;
end
end

Plot the Welch periodogram of each signal and annotate the component frequencies. Use a 200-
sample Hamming window to divide the signals into non-overlapping segments and window the
segments.

[pxx,f] = pwelch(tones,hamming(200),0,[],fs);

for k = 1:v
for 1 = 1:h
idx = h*(k-1)+1;

ax = subplot(v,h,idx);
plot(f,10*1oglO(pxx(:,idx)))
ylim([-80 0])
title(nms(idx))
tx = [ver(k);hor(l)];
ax.XTick = tx;
ax.XTickLabel = int2str(tx);
end
end
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A signal produced by dialing the number 8 is sent through a noisy channel. The received signal is so

corrupted that the number cannot be identified by inspection.

mys = sum(sin(2*pi*[ver(3);hor(2)].*t)) " '+5*randn(size(t'));

% To hear, type soundsc(mys,fs)

Compute the cross power spectral density of the corrupted signal and the reference signals. Window
the signals using a 512-sample Kaiser window with shape factor § = 5. Plot the magnitude of each

spectrum.

[pxy, f]

for k = 1:v
for 1 = 1:h
idx = h*(k-1)+1;
ax = subplot(v,h,idx);

cpsd(mys, tones, kaiser(512,5),100,[],fs);

plot(f,10*logl0O(abs(pxy(:,idx))))

ylim([-80 0])
title(nms(idx))
tx = [ver(k);hor(l)];
ax.XTick = tx;
ax.XTickLabel = int2str(tx);
end
end
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The digit in the corrupted signal has the spectrum with the highest peaks and the highest RMS value.

[~,loc] = max(rms(abs(pxy)));

nms (loc)

digit

digit
I8I

Input Arguments

X, Yy — Input signals
vectors | matrices

Input signals, specified as vectors or matrices.

Example: cos(pi/4*(0:159))+randn(1,160) specifies a sinusoid embedded in white Gaussian
noise.

Data Types: single | double
Complex Number Support: Yes

window — Window
integer | vector | [ 1]

Window, specified as an integer or as a row or column vector. Use window to divide the signal into
segments.
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+ Ifwindow is an integer, then cpsd divides x and y into segments of length window and windows
each segment with a Hamming window of that length.

» Ifwindow is a vector, then cpsd divides x and y into segments of the same length as the vector
and windows each segment using window.

If the length of x and y cannot be divided exactly into an integer number of segments with noverlap
overlapping samples, then the signals are truncated accordingly.

If you specify window as empty, then cpsd uses a Hamming window such that x and y are divided
into eight segments with noverlap overlapping samples.

For a list of available windows, see “Windows”.

Example: hann(N+1) and (1-cos(2*pi*(0:N)"'/N))/2 both specify a Hann window of length
N+ 1.

Data Types: single | double

noverlap — Number of overlapped samples
positive integer | []

Number of overlapped samples, specified as a positive integer.

» Ifwindow is scalar, then noverlap must be smaller than window.
» Ifwindow is a vector, then noverlap must be smaller than the length of window.

If you specify noverlap as empty, then cpsd uses a number that produces 50% overlap between
segments. If the segment length is unspecified, the function sets noverlap to [N/4.5], where N is the
length of the input and output signals.

Data Types: double | single

nfft — Number of DFT points
positive integer | []

Number of DFT points, specified as a positive integer. If you specify nfft as empty, then cpsd sets
the parameter to max(256,2P), where p = [log, N for input signals of length N.

Data Types: single | double

fs — Sample rate
positive scalar

Sample rate, specified as a positive scalar. The sample rate is the number of samples per unit time. If
the unit of time is seconds, then the sample rate has units of Hz.

w — Normalized frequencies
vector

Normalized frequencies, specified as a row or column vector with at least two elements. Normalized
frequencies are in rad/sample.

Example:w = [pi/4 pi/2]
Data Types: double

f — Frequencies
vector
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Frequencies, specified as a row or column vector with at least two elements. The frequencies are in
cycles per unit time. The unit time is specified by the sample rate, fs. If fs has units of samples/
second, then f has units of Hz.

Example: fs = 1000; f = [100 200]
Data Types: double

freqrange — Frequency range for cross power spectral density estimate
‘onesided' | 'twosided' | 'centered’

Frequency range for cross power spectral density estimate, specified as 'onesided’', 'twosided’,
or 'centered'. The default is 'onesided' for real-valued signals and 'twosided' for complex-
valued signals.

* ‘'onesided' — Returns the one-sided estimate of the cross power spectral density of two real-
valued input signals, x and y. If nfft is even, pxy has nfft/2 + 1 rows and is computed over the
interval [0,7] rad/sample. If nfft is odd, pxy has (nfft + 1)/2 rows and the interval is [0,7) rad/
sample. If you specify fs, the corresponding intervals are [0,fs/2] cycles/unit time for even nfft
and [0,fs/2) cycles/unit time for odd nfft.

*+ 'twosided' — Returns the two-sided estimate of the cross power spectral density of two real-
valued or complex-valued input signals, x and y. In this case, pxy has nfft rows and is computed
over the interval [0,21) rad/sample. If you specify fs, the interval is [0, fs) cycles/unit time.

* 'centered' — Returns the centered two-sided estimate of the cross power spectral density of
two real-valued or complex-valued input signals, x and y. In this case, pxy has nfft rows and is
computed over the interval (-m,11] rad/sample for even nfft and (-m,m) rad/sample for odd nfft. If
you specify fs, the corresponding intervals are (-fs/2, fs/2] cycles/unit time for even nfft and (-
fs/2, fs/2) cycles/unit time for odd nfft.

Output Arguments

pxy — Cross power spectral density
vector | matrix | three-dimensional array

Cross power spectral density, returned as a vector, matrix, or three-dimensional array.

w — Normalized frequencies
vector

Normalized frequencies, returned as a real-valued column vector.

» If pxy is one-sided, w spans the interval [0,;r] when nfft is even and [0,17) when nfft is odd.
» If pxy is two-sided, w spans the interval [0,2m).
» If pxy is DC-centered, w spans the interval (-m,z] when nfft is even and (-m,7) when nfft is odd.

Data Types: double | single

f — Frequencies
vector

Frequencies, returned as a real-valued column vector.

Data Types: double | single
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More About

Cross Power Spectral Density

The cross power spectral density is the distribution of power per unit frequency and is defined as
Pyyw)= >  Ry(mye Jom,
m= —x

The cross-correlation sequence is defined as
Ryy(m) = E{xn+myn} = E{xnyn - m},

where x, and y, are jointly stationary random processes, -0 <n < o, —o <n < », and E {- } is the
expected value operator.

Algorithms

cpsd uses Welch’s averaged, modified periodogram method of spectral estimation.

References

[1] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[2] Rabiner, Lawrence R., and B. Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975, pp. 414-419.

[3] Welch, Peter D. “The Use of the Fast Fourier Transform for the Estimation of Power Spectra: A

Method Based on Time Averaging Over Short, Modified Periodograms.” IEEE Transactions on
Audio and Electroacoustics, Vol. AU-15, June 1967, pp. 70-73.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
mscohere | pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear |
tfestimate

Topics
“Cross Spectrum and Magnitude-Squared Coherence”
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cusum

Detect small changes in mean using cumulative sum

Syntax

[iupper,ilower] = cusum(x)

[iupper,ilower] = cusum(x,climit,mshift,tmean,tdev)

[iupper,ilower] = cusum(___ ,‘'all')
[iupper,ilower,uppersum, lowersum] = cusum( )
cusum( )

Description

[iupper,ilower] = cusum(x) returns the first index of the upper and lower cumulative sums of x
that have drifted beyond five standard deviations above and below a target mean. The minimum
detectable mean shift is set to one standard deviation. The target mean and standard deviations are
estimated from the first 25 samples of x.

[iupper,ilower] = cusum(x,climit,mshift, tmean, tdev) specifies climit, the number of
standard deviations that the upper and lower cumulative sums are allowed to drift from the mean. It
also specifies the minimum detectable mean shift, the target mean, and the target standard deviation.

[iupper,ilower] = cusum( , 'all') returns all the indices at which the upper and lower
cumulative sums exceed the control limit.

[iupper,ilower,uppersum, lowersum] = cusum( ) also returns the upper and lower
cumulative sums.

cusum( ) with no output arguments plots the upper and lower cumulative sums normalized to
one standard deviation above and below the target mean.

Examples

cusum Default Values

Generate and plot a 100-sample random signal with a linear trend. Reset the random number
generator for reproducible results.

rng('default")

rnds
trnd

rand(1,100);
linspace(0,1,100);

fnc = rnds + trnd;

plot(fnc)
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Apply cusum to the function using the default values of the input arguments.

cusum(fnc)
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Compute the mean and standard deviation of the first 25 samples. Apply cusum using these numbers
as the target mean and the target standard deviation. Highlight the point where the cumulative sum
drifts more than five standard deviations beyond the target mean. Set the minimum detectable mean

shift to one standard deviation.

mfnc
sfnc

mean(fnc(1:25));
std(fnc(1:25));

cusum(fnc,5,1,mfnc,sfnc)
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Repeat the calculation using a negative linear trend.
nnc = rnds - trnd;

cusum(nnc)
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Unstable Motion Detection

Generate a signal resembling motion about an axle that becomes unstable due to wear. Add white
Gaussian noise of variance 1/9. Reset the random number generator for reproducible results.

rng default

sz = 200;
dr = airy(2,linspace(-14.9371,1.2,s2));
rd = dr + sin(2*pi*(1l:sz)/5) + randn(1l,sz)/3;

Plot the growing background drift and the resulting signal.

plot(dr)
hold on
plot(rd,"'.-")
hold off
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Find the mean and standard deviation if the drift is not present and there is no noise. Plot the ideal
noiseless signal and its stable background.

id = 0.3*sin(2*pi*(1:s2)/20);
st = id + sin(2*pi*(1l:sz)/5);
mf = mean(st)

mf = -3.8212e-16

st = std(st)

sf = 0.7401

plot(id)

hold on

plot(st,'.-")

hold off
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Use the CUSUM control chart to pinpoint the onset of instability. Assume that the system becomes
unstable when the signal is three standard deviations beyond its ideal behavior. Specify a minimum
detectable shift of one standard deviation.

cusum(rd,3,1,mf,sf)
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Make the violation criterion more strict by increasing the minimum detectable shift. Return all

instances of unwanted drift.

cusum(rd,3,1.2,mf,sf,'all")
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Golf Scorecards

Every hole in golf has an associated "par" that indicates the expected number of strokes needed to
sink the ball. Skilled players usually complete each hole with a number of strokes very close to par. It

is necessary to play several holes and let scores accumulate before a clear winner emerges in a

match.

Ben, Jen, and Ken play a full round, which consists of 18 holes. The course has an assortment of
par-3, par-4, and par-5 holes. At the end of the game, the players tabulate their scores.

hole = 1:18;
par = [435345344453544434];
nms = {'Ben';"'Jen'; 'Ken'};
Ben = [434235233432333323];
Jden =[4343443444534455 3 3];
Ken = [434355444453545435];
T = table(hole',par',Ben',Jen',Ken',
'VariableNames',['hole'; 'par';nms])
T=18x5 table
hole par Ben Jen Ken
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1 4 4 4 4

2 3 3 3 3

3 5 4 4 4

4 3 2 3 3

5 4 3 4 5

6 5 5 4 5

7 3 2 3 4

8 4 3 4 4

9 4 3 4 4

10 4 4 4 4
11 5 3 5 5
12 3 2 3 3
13 5 3 4 5
14 4 3 4 4
15 4 3 5 5
4 3 5 4

The winner of the round is the player whose lower cumulative sum drifts the most below par at the
end. Compute the sums for the three players to determine the winner. Make every shift in mean
detectable by setting a small threshold.

[~,b,~,Bensum]
[~,j,~,Jensum]
[~,k,~,Kensum]

cusum(Ben-par,1,1e-4,0);
cusum(Jen-par,1,1le-4,0);
cusum(Ken-par,1,1e-4,0);

plot([Bensum;Jensum;Kensum] ")
legend(nms, 'Location', 'best')
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Ben
Jen

Ken
_15 1 1 1 1 1 1 1 1

Ben wins the round. Simulate their next game by adding or subtracting a stroke per hole at random.

Ben = Ben+randi(3,1,18)-2;
Jen = Jen+randi(3,1,18)-2;
Ken = Ken+randi(3,1,18)-2;
[~,b,~,Bensum] = cusum(Ben-par,1,1le-4,0);
[~,j,~,Jensum] = cusum(Jen-par,1,le-4,0);
[~,k,~,Kensum] = cusum(Ken-par,1,1le-4,0);

plot([Bensum;Jensum;Kensum] ')
legend(nms, 'Location', 'best')
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Input Arguments

x — Input signal
vector

Input signal, specified as a vector.
Example: reshape(rand(100,1)*[-1 1],1,200)

climit — Control limit
5 (default) | real scalar

Control limit, specified as a real scalar expressed in standard deviations.

mshift — Minimum mean shift to detect
1 (default) | real scalar

Minimum mean shift to detect, specified as a real scalar expressed in standard deviations.

tmean — Target mean
mean(x(1:25)) (default) | real scalar

Target mean, specified as a real scalar. If tmean is not specified, then it is estimated as the mean of
the first 25 samples of x.

1-224



cusum

tdev — Target standard deviation
std(x(1:25)) (default) | real scalar

Target standard deviation, specified as a real scalar. If tdev is not specified, then it is estimated as
the standard deviation of the first 25 samples of x.

Output Arguments

iupper,ilower — Out-of-control point indices
integer scalars | integer vectors

Out-of-control point indices, returned as integer scalars or vectors. If all signal samples are within the
specified tolerance, then cusum returns empty iupper and ilower arguments.

uppersum, Lowersum — Upper and lower cumulative sums
vectors

Upper and lower cumulative sums, returned as vectors.

More About
CUSUM Control Chart
The CUSUM control chart is designed to detect small incremental changes in the mean of a process.

Given a sequence Xi, Xy, X3, ..., X, wWith estimated average m, and estimated standard deviation o,,
define upper and lower cumulative process sums using:

« Upper cumulative sum

0, i=1
Ui = max(0, U; _ 1 +xi—mx—%n0x), i>1

* Lower sum
0, i=1

L= . :
! {mln(O, Li—g+x—my+ %HUX), i>1

The variable n, represented in cusum by the mshift argument, is the number of standard deviations
from the target mean, tmean, that make a shift detectable.

A process violates the CUSUM criterion at the sample x; if it obeys U; > co, or L; < -co,. The control
limit c is represented in cusum by the climit argument.

By default, the function returns the first violation it detects. If you specify the 'all’' flag, the
function returns every violation.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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If supplied, input argument 'all' must be a compile-time constant.

See Also
findchangepts | mean

Introduced in R2016a
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czt

Chirp Z-transform

Syntax

y = czt(x,m,w,a)

Description

y = czt(x,m,w,a) returns the length-m chirp Z-transform (CZT) of x along the spiral contour on
the z-plane defined by w and a through z = a*w.”-(0:m-1).

With the default values of m, w, and a, czt returns the Z-transform of x at m equally spaced points
around the unit circle, a result equivalent to the discrete Fourier transform (DFT) of x as given by
fft(x).

Examples

CZT of a Random Vector

Create a random vector, X, of length 1013. Compute its DFT using czt.

default
randn(1013,1);
czt(x);

n

I n«e

r
X
y

Narrowband Section of Frequency Response
Use czt to zoom in on a narrow-band section of a filter's frequency response.

Design a 30th-order lowpass FIR filter using the window method. Specify a sample rate of 1 kHz and
a cutoff frequency of 125 Hz. Use a rectangular window. Find the transfer function of the filter.

fs = 1000;

d = designfilt('lowpassfir', 'FilterOrder',30, ' 'CutoffFrequency',125,
'DesignMethod', 'window', 'Window',@rectwin, 'SampleRate', fs);

h = tf(d);

Compute the DFT and the CZT of the filter. Restrict the frequency range of the CZT to the band
between 75 and 175 Hz. Generate 1024 samples in each case.

m = 1024;
y = fft(h,m);
fl = 75;
f2 = 175;

w = exp(-j*¥2*¥pi*(f2-f1l)/(m*fs));
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exp(j*2*pi*fl/fs);
czt(h,m,w,a);

Plot the transforms. Zoom in on the area of interest.

fn = (0:m-1)"'/m;
fy = fs*fn;
fz = (f2-f1)*fn + f1;

plot(fy,abs(y),fz,abs(z))
x1im([50 2001])
legend('FFT','CZT")
xlabel('Frequency (Hz)"')

1.2 T T

0.8 | .
0.6 .

0.4 F -

50 100 150 200
Frequency (Hz)

Input Arguments

x — Input signal
vector | matrix | 3-D array

Input signal, specified as a vector, a matrix, or a 3-D array. If x is a matrix, the function transforms
the columns of x. If x is a 3-D array, the function operates along the first array dimension with size
greater than 1.

Example: sin(pi./[4;2]1*(0:159)) ' specifies a two-channel sinusoid.

Data Types: single | double
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Complex Number Support: Yes

m — Transform length
length(x) (default) | positive integer scalar

Transform length, specified as a positive integer scalar.

Data Types: single | double

w — Ratio between spiral contour points
exp(-2j*pi/m) (default) | complex scalar

Ratio between spiral contour points, specified as a complex scalar.

Data Types: single | double
Complex Number Support: Yes

a — Spiral contour initial point
1 (default) | complex scalar

Spiral contour initial point, specified as a complex scalar.

Example: exp(1j*pi/4) lies along the unit circle on the z-plane and makes an angle of 45 degrees
with the real axis.

Data Types: single | double
Complex Number Support: Yes

Output Arguments

y — Chirp Z-transform
vector | matrix

Chirp Z-transform, returned as a vector or matrix.

Algorithms

czt uses the next power-of-2 length FFT to perform a fast convolution when computing the Z-
transform on a specified chirp contour [1].

References

[1] Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1975.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* See “Automatic dimension restriction” (MATLAB Coder).
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» 3-D arrays are not supported for code generation.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.

This function fully supports GPU arrays. For more information, see “Run MATLAB Functions on a
GPU” (Parallel Computing Toolbox).

See Also
fft| freqz

Topics
“Chirp Z-Transform”

Introduced before R2006a
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Convert energy or power measurements to decibels

Syntax

dboutput = db(x)

dboutput = db(x,SignalType)
dboutput = db(x,R)

dboutput = db(x, 'voltage',R)
Description

dboutput = db(x) converts the elements of x to decibels (dB). This syntax assumes that x contains
voltage measurements across a resistance of 1 Q.

dboutput = db(x,SignalType) specifies the signal type represented by the elements of x as
either 'voltage' or 'power'.

dboutput = db(x,R) specifies the resistance, R, for voltage measurements.
dboutput = db(x, 'voltage',R) is equivalent to db(x,R).
Examples

Decibels from Voltage and Power

Express a unit voltage in decibels. Assume that the resistance is 2 ohms. Compare the answer to the

definition, 1010910%.

V=1,

R =2;

dboutput = db(V,2);

compvoltage = [dboutput 10*10gl10(1/2)]

compvoltage = 1Ix2

-3.0103 -3.0103

Convert a vector of power measurements to decibels. Compare the answer to the result of using the
definition.

rng default

X = abs(rand(10,1));

dboutput = db(X, 'power');

comppower = [dboutput 10*10gl0(X)]

comppower = 10x2

-0.8899 -0.8899
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-0.4297 -0.4297
-8.9624 -8.9624
-0.3935 -0.3935
-1.9904 -1.9904
-10.1082 -10.1082
-5.5518 -5.5518
-2.6211 -2.6211
-0.1886 -0.1886
-0.1552 -0.1552

Input Arguments

x — Signal measurements
scalar | vector | matrix | N-D array

Signal measurements, specified as a scalar, vector, matrix, or N-D array.

Data Types: single | double
Complex Number Support: Yes

SignalType — Type of signal measurements
‘voltage' (default) | 'power'

Type of signal measurements, specified as either 'voltage' or 'power'. If you specify SignalType
as 'power’, then all elements of X must be nonnegative.

R — Resistive load
1 Q (default) | positive scalar

Resistive load, specified as a positive scalar expressed in ohms. This argument is ignored if you
specify SignalType as 'power"'.

Data Types: single | double
Output Arguments

dboutput — Energy or power measurements in decibels
scalar | vector | matrix | N-D array

Energy or power measurements in decibels, returned as an array with the same dimensions as x.

If x contains voltage measurements, then dboutput is 10 loglo(lxlz/R).

« If the input x contains power measurements, then dboutput is 10 logqpx.

See Also
db2mag | db2pow | mag2db | pow2db

Introduced in R2011b
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db2mag

Convert decibels to magnitude

Syntax
y = db2mag(ydb)

Description

y = db2mag(ydb) returns the magnitude measurements, y, that correspond to the decibel (dB)

values specified in ydb. The relationship between magnitude and decibels is ydb = 20 log;,(y).

Examples

Magnitudes of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are expressed in

decibels and compute the corresponding magnitudes.

r = randn(2,4,2);

mags = db2mag(r)

mags =
mags(:,:,1)

1.0639 0.7710 1.0374
1.2351 1.1044 0.8602

mags(:,:,2)

1.5098 0.8561 1.0871
1.3755 1.4182 0.9928

0.9513
1.0402

1.0858
0.9767

Use the definition to check the calculation.

chck = 10.7(r/20)

chck =
check(:,:,1)

1.0639 0.7710 1.0374
1.2351 1.1044 0.8602

chck(:,:,2)

1.5098 0.8561 1.0871
1.3755 1.4182 0.9928

0.9513
1.0402

1.0858
0.9767
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Input Arguments

ydb — Input array in decibels
scalar | vector | matrix | N-D array

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is nonscalar,
db2mag is an element-wise operation.

Data Types: single | double

Output Arguments

y — Magnitude measurements
scalar | vector | matrix | N-D array

Magnitude measurements, returned as a scalar, vector, matrix, or N-D array of the same size as ydb.

See Also
db | db2pow | mag2db | pow2db

Introduced in R2008a
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db2pow

Convert decibels to power

Syntax
y = db2pow(ydb)

Description

y = db2pow(ydb) returns the power measurements, y, that correspond to the decibel (dB) values

specified in ydb. The relationship between power and decibels is ydb = 10 log;(y).

Examples

Power Values of Random Numbers

Generate a 2-by-4-by-2 array of Gaussian random numbers. Assume the numbers are expressed in

decibels and compute the corresponding power measurements.

r = randn(2,4,2);

pows = db2pow(r)

pows =
pows(:,:,1) =

1.1318 0.5944 1.0762
1.5254 1.2196 0.7400
pows(:,:,2) =

2.2795 0.7328 1.1818
1.8921 2.0114 0.9856

0.9050
1.0821

1.1789
0.9539

Use the definition to check the calculation.

chck = 10.7(r/10)

chck =
chck(:,:,1)

1.1318 0.5944 1.0762
1.5254 1.2196 0.7400

chck(:,:,2)

2.2795 0.7328 1.1818
1.8921 2.0114 0.9856

0.9050
1.0821

1.1789
0.9539

1-235



1 Functions

Input Arguments

ydb — Input array in decibels
scalar | vector | matrix | N-D array

Input array in decibels, specified as a scalar, vector, matrix, or N-D array. When ydb is nonscalar,
db2pow is an element-wise operation.

Data Types: single | double
Output Arguments

y — Power measurements
scalar | vector | matrix | N-D array

Power measurements, returned as a scalar, vector, matrix, or N-D array of the same size as ydb.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
db | db2mag | mag2db | pow2db

Introduced in R2007b
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Discrete cosine transform

Syntax

y = dct(x)

y = dct(x,n)

y = dct(x,n,dim)

y = dct(__ ,'Type',dcttype)
Description

y = dct(x) returns the unitary discrete cosine transform of input array x. The output y has the
same size as X. If x has more than one dimension, then dct operates along the first array dimension

with size greater than 1.

Yy

dct(x,n) zero-pads or truncates the relevant dimension of x to length n before transforming.

y = dct(x,n,dim) computes the transform along dimension dim. To input a dimension and use the

default value of n, specify the second argument as empty, [].

y = dct(__ ,'Type',dcttype) specifies the type of discrete cosine transform to compute. See
“Discrete Cosine Transform” on page 1-243 for details. This option can be combined with any of the

previous syntaxes.

Examples

Energy Stored in DCT Coefficients

Find how many DCT coefficients represent 99% of the energy in a sequence.

X (1:100) + 50*cos((1:100)*2*pi/40);

X = dct(x);

[XX,ind] = sort(abs(X), 'descend');

i=1;

while norm(X(ind(1:1i)))/norm(X) < 0.99
i=1+1;

end

needed = i;

Reconstruct the signal and compare it to the original signal.

X(ind(needed+l:end)) = 0;
xX = idct(X);

plot([x;xx]")
legend('Original',['Reconstructed, N = ' int2str(needed)],
'"Location', 'SouthEast')
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Image Data Compression

Load a file that contains depth measurements of a mold used to mint a United States penny. The data,
taken at the National Institute of Standards and Technology, are sampled on a 128-by-128 grid.
Display the data.

load penny

surf(P)

view(2)

colormap copper
shading interp
axis ij square off

1-238



dct

Compute the discrete cosine transform of the image data. Operate first along the rows and then along
the columns.

Q
R

dct(P,[],1);
dct(Q,[1,2);

Find what percentage of DCT coefficients contain 99.98% of the energy in the image.

[~,ind] = sort(abs(R(:)), 'descend');
coeffs = 1;
while norm(X(ind(1:coeffs)))/norm(X) < 0.9998
coeffs = coeffs + 1;
end
fprintf('%3.1f%% of the coefficients are sufficient\n',coeffs/numel(R)*100)

21.8% of the coefficients are sufficient
Reconstruct the image using only the necessary coefficients.
R(abs(R) < abs(X(ind(coeffs)))) = 0;

S
T

idct(R,[1,2);
idct (S, [1,1);

Display the reconstructed image.
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surf(T)

view(2)

shading interp
axis 1j square off

Image Resizing

Load a file that contains depth measurements of a mold used to mint a United States penny. The data,
taken at the National Institute of Standards and Technology, are sampled on a 128-by-128 grid.
Display the data.

load penny

surf(P)

view(2)

colormap copper
shading interp
axis 1j square off
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Compute the discrete cosine transform of the image data using the DCT-1 variant. Operate first along
the rows and then along the columns.

Q
R

dct(P,[1,1, 'Type',1);
dct(Q,[1,2, 'Type',1);

Invert the transform. Truncate the inverse so that each dimension of the reconstructed image is one-
half the length of the original.

S
T

idct(R,size(P,2)/2,2, 'Type',1);
idct(S,size(P,1)/2,1, 'Type',1);

Invert the transform again. Zero-pad the inverse so that each dimension of the reconstructed image is
twice the length of the original.

u
v

idct(R,size(P,2)*2,2, 'Type',1);
idct(U,size(P,1)*2,1, 'Type',1);

Display the original and reconstructed images.

surf(V)
view(2)
shading interp
hold on

surf(P)

view(2)
shading interp
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surf(T)

view(2)

shading interp
hold off

axis 1j equal off

Input Arguments

X — Input array
vector | matrix | N-D array | gpuArray object

Input array, specified as a real-valued or complex-valued vector, matrix, N-D array, or gpuArray
object.

See “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox) and “GPU Support by Release”
(Parallel Computing Toolbox) for details on gpuArray objects.

Example: sin(2*pi*(0:255)/4) specifies a sinusoid as a row vector.
Example: sin(2*pi*[0.1;0.3]1*(0:39)) ' specifies a two-channel sinusoid.

Data Types: single | double
Complex Number Support: Yes

n — Transform length
positive integer scalar
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Transform length, specified as a positive integer scalar.

Data Types: single | double

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar.

Data Types: single | double

dcttype — Discrete cosine transform type
2 (default) | 1|3 |4

Discrete cosine transform type, specified as a positive integer scalar from 1 to 4. See “Discrete
Cosine Transform” on page 1-243 for the definitions of the different types of DCT.

Data Types: single | double

Output Arguments

y — Discrete cosine transform
vector | matrix | N-D array | gpuArray object

Discrete cosine transform, returned as a real-valued or complex-valued vector, matrix, N-D array, or
gpuArray object.

More About

Discrete Cosine Transform

The discrete cosine transform (DCT) is closely related to the discrete Fourier transform. You can often
reconstruct a sequence very accurately from only a few DCT coefficients. This property is useful for

applications requiring data reduction.

The DCT has four standard variants. For a signal x of length N, and with 6, the Kronecker delta, the
transforms are defined by:

e DCT-1:
1 mo _
y 2 x(n) \/1+6 1+6nN\/1+6k1+6kN OS(N_l\n Dk 1))
e DCT-2:
I
,21 N 6klcos(m(2n -1k - 1)
e DCT-3:
II
cos ——Mn-1)2k-1)
\/7n =1 nl (2N )
e DCT-4:
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1-244

2 n)cos( z77(2n = 1)(2k - 1)

n—1

The series are indexed from n = 1 and k = 1 instead of the usual n = 0 and k = 0, because MATLAB
vectors run from 1 to N instead of from O to N - 1.

All variants of the DCT are unitary (or, equivalently, orthogonal): To find their inverses, switch k and n
in each definition. DCT-1 and DCT-4 are their own inverses. DCT-2 and DCT-3 are inverses of each
other.

References
[1]Jain, A. K. Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[2] Oppenheim, Alan V., Ronald W. Schafer, and John R. Buck. Discrete-Time Signal Processing. 2nd
Ed. Upper Saddle River, NJ: Prentice Hall, 1999.

[3] Pennebaker, W. B., and J. L. Mitchell. JPEG Still Image Data Compression Standard. New York: Van
Nostrand Reinhold, 1993.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* Cand C++ code generation for dct requires DSP System Toolbox™ software.

* The length of the transform dimension must be a power of two. If specified, the pad or truncation
value must be constant. Expressions or variables are allowed if their values do not change.

* Inputs must be double precision.
* Only DCT-2 is allowed.

GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™

Usage notes and limitations:

* N-D input arrays are not supported.
* The dim and dcttype input arguments are not supported.

For more information, see “Run MATLAB Functions on a GPU” (Parallel Computing Toolbox).

See Also
dct2 | fft | idct | idct2

Topics
“DCT for Speech Signal Compression”

Introduced before R2006a
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Decimation — decrease sample rate by integer factor

Syntax

y = decimate(x,r)

y = decimate(x, r,n)

y = decimate(x,r,'fir")

y = decimate(x,r,n,'fir")
Description

y = decimate(x, r) reduces the sample rate of x, the input signal, by a factor of r. The decimated
vector, vy, is shortened by a factor of r so that length(y) = ceil(length(x)/r). By default,
decimate uses a lowpass Chebyshev Type I infinite impulse response (IIR) filter of order 8.

decimate(x, r,n) uses a Chebyshev filter of order n.

Yy

y decimate(x,r, 'fir') uses a finite impulse response (FIR) filter designed using the window
method with a Hamming window. The filter has an order of 30.

y = decimate(x,r,n,'fir') uses an FIR filter of order n.

Examples

Decimate Signal

Create a sinusoidal signal sampled at 4 kHz. Decimate it by a factor of four.

t = 0:1/4e3:1;
X = sin(2*pi*30*t) + sin(2*pi*60*t);
y = decimate(x,4);

Plot the original and decimated signals.

subplot(2,1,1)
stem(0:120,x(1:121), 'filled', 'MarkerSize',3)
grid on

xlabel('Sample Number')

ylabel('Original"')

subplot(2,1,
stem(0:30,y(
grid on
xlabel('Sample Number')
ylabel('Decimated")

2)
1:31), 'filled', 'MarkerSize',3)

1-245



1 Functions

2 T T T T
1 m -
‘™
5 D+ﬂ.m
o
-1k
.
_2 i i i i i
0 20 40 &0 80 100 120
Sample Mumber
2 L T T T T
U 1- [ [ -
2 /] I
E D i 1 & T T T T &
2 s L1
O
-1F -
.
_2 i i i i i
0 5 10 15 20 25 30

Sample Mumber

Decimate Signal Using Chebyshev Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using a Chebyshev IIR filter of order
5. Plot the original and decimated signals.

r 13;

n 16:365;

1x = length(n);

X = sin(2*pi*n/153) + cos(2*pi*n/127);

plot(0:1x-1,x,'0")

hold on

y = decimate(x,r,5);
stem(1lx-1:-r:0,fliplr(y),'ro', 'filled"', 'markersize',4)

legend('Original', 'Decimated', 'Location', 'south')

xlabel('Sample number')
ylabel('Signal')
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2 Original
———# Decimated

_1 i i i i i i
0 50 100 150 200 250 300 350

Sample number

The original and decimated signals have matching last elements.

Decimate Signal Using FIR Filter

Create a signal with two sinusoids. Decimate it by a factor of 13 using an FIR filter of order 82. Plot

the original and decimated signals.

r 13;

n 16:365;

1x = length(n);

X = sin(2*pi*n/153) + cos(2*pi*n/127);

plot(0:1x-1,x,'0")

hold on

y = decimate(x,r,82,'fir'");
stem(0:r:1x-1,y,'ro","'filled"', 'markersize"',4)

legend('Original', 'Decimated', 'Location', 'south")
xlabel('Sample number')
ylabel('Signal"')
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2 Original
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Sample number

The original and decimated signals have matching first elements.

Input Arguments

x — Input signal
vector
Input signal, specified as a vector.

Data Types: double

r — Decimation factor
positive integer

Decimation factor, specified as a positive integer. For better results when r is greater than 13, divide
r into smaller factors and call decimate several times.

Data Types: double

n — Filter order
positive integer

Filter order, specified as a positive integer. IIR filter orders above 13 are not recommended because
of numerical instability. The function displays a warning in those cases.

Data Types: double
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Output Arguments

y — Decimated signal
vector

Decimated signal, returned as a vector.

Data Types: double

Algorithms

Decimation reduces the original sample rate of a sequence to a lower rate. It is the opposite of
interpolation. decimate lowpass filters the input to guard against aliasing and downsamples the
result. The function uses decimation algorithms 8.2 and 8.3 from [1].

1 decimate creates a lowpass filter. The default is a Chebyshev Type I filter designed using
chebyl. This filter has a normalized cutoff frequency of 0.8/ r and a passband ripple of 0.05 dB.
Sometimes, the specified filter order produces passband distortion due to round-off errors
accumulated from the convolutions needed to create the transfer function. decimate
automatically reduces the filter order when distortion causes the magnitude response at the
cutoff frequency to differ from the ripple by more than 10,

When the 'fir' option is chosen, decimate uses firl to design a lowpass FIR filter with cutoff
frequency 1/r.

2 When using the FIR filter, decimate filters the input sequence in only one direction. This
conserves memory and is useful for working with long sequences. In the IIR case, decimate
applies the filter in the forward and reverse directions using filtfilt to remove phase
distortion. In effect, this process doubles the filter order. In both cases, the function minimizes
transient effects at both ends of the signal by matching endpoint conditions.

3 Finally, decimate resamples the data by selecting every rth point from the interior of the
filtered signal. In the resampled sequence (y), y (end) matches x(end) when the IIR filter is
used, and y (1) matches x(1) when the FIR filter is used.

References

[1] Digital Signal Processing Committee of the IEEE Acoustics, Speech, and Signal Processing
Society, eds. Programs for Digital Signal Processing. New York: IEEE Press, 1979.

See Also
chebyl | downsample | filtfilt | firl | interp | resample

Introduced before R2006a
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Demodulation for communications simulation

Syntax

X
X

demod(y, fc, fs,method)
demod(y, fc, fs,method, opt)

Description

x = demod(y, fc,fs,method) demodulates the real carrier signal y with a carrier frequency fc
and sample rate fs using the method specified in method.

x = demod(y, fc,fs,method,opt) demodulates the real carrier signal y using the additional
options specified in opt.

Examples

Frequency Modulation and Demodulation

Generate a 150 Hz sinusoid sampled at 8 kHz for 1 second. Embed the modulated signal in white
Gaussian noise of variance 0.12.

fs = 8e3;

t
S

0:1/fs:1-1/Fs;
cos(2*pi*150*t) + randn(size(t))/10;

Frequency modulate the signal at a carrier frequency of 3 kHz using a modulation constant of 0.1.

fc
rx

3e3;
modulate(s,fc,fs, 'fm',0.1);

Frequency demodulate the signal using the same carrier frequency and modulation constant.
Compute and plot power spectrum estimates for the transmitted, received, and demodulated signals.

y = demod(rx,fc,fs,'fm',0.1);
pspectrum([s;rx;y]l',fs, 'Leakage',0.85)

legend('Transmitted signal', 'Received signal', 'Demodulated signal', 'Location', 'best')
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Input Arguments

y — Modulated signal
real vector | real matrix

Modulated message signal, specified as a real vector or matrix. Except for the methods pwm and ppm,
y is the same size as x.

fc — Carrier frequency
real positive scalar

Carrier frequency used to modulate the message signal, specified as a real positive scalar.

fs — Sample rate
real positive scalar

Sample rate, specified as a real positive scalar.

method — Method of modulation used
‘am' (default) | 'amdsb-tc' | ‘amssb' | 'fm' | "pm' | 'pwm' | "ppm' | ‘gam’

Method of modulation used, specified as one of:

* amor amdsb-sc — Amplitude demodulation, double sideband, suppressed carrier. Multiplies y by
a sinusoid of frequency fc and applies a fifth-order Butterworth lowpass filter using filtfilt.
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X = y.*cos(2*pi*fc*t);

[b,a]l = butter(5,fc*2/fs);

x = filtfilt(b,a,x);

amdsb-tc — Amplitude demodulation, double sideband, transmitted carrier. Multiplies y by a
sinusoid of frequency fc and applies a fifth-order Butterworth lowpass filter using filtfilt.

X = y.*cos(2*pi*fc*t);
[b,a]l = butter(5,fc*2/fs);
x = filtfilt(b,a,x);

If you specify opt, demod subtracts scalar opt from x. The default value for opt is 0.

amssb — Amplitude demodulation, single sideband. Multiplies y by a sinusoid of frequency fc and
applies a fifth-order Butterworth lowpass filter using filtfilt..

X = y.*cos(2*pi*fc*t);

[b,a] = butter(5,fc*2/fs);

x = filtfilt(b,a,x);

fm — Frequency demodulation. Demodulates the FM waveform by modulating the Hilbert
transform of y by a complex exponential of frequency - fc Hz and obtains the instantaneous
frequency of the result..

y=cos (2*pi*fc*t + opt*cumsum(x))

cumsum is a rectangular approximation of the integral of x. modulate uses opt as the constant of
frequency modulation. If you do not specify the opt parameter, modulate uses a default of
opt = (fc/fs)*2*pi/(max(max(x))) sothe maximum frequency excursion from fc is fc Hz.

pm — Phase demodulation. Demodulates the PM waveform by modulating the Hilbert transform of
y by a complex exponential of frequency - fc Hz and obtains the instantaneous phase of the
result.

y=cos (2*pi*fc*t + opt*x)

modulate uses opt as the constant of phase modulation. If you do not specify the opt parameter,
modulate uses a default of opt = pi/(max(max(x))) so the maximum phase excursion is i
radians.

pwm — Pulse-width demodulation. Finds the pulse widths of a pulse-width modulated signal y.
demod returns in x a vector whose elements specify the width of each pulse in fractions of a
period. The pulses in y should start at the beginning of each carrier period, that is, they should be
left justified. modulate(x, fc,fs, 'pwm', 'centered') yields pulses centered at the beginning
of each period. The length of y is length(x)*fs/fc.

ppm — Pulse-position demodulation. Finds the pulse positions of a pulse-position modulated signal
y. For correct demodulation, the pulses cannot overlap. x is length length(t)*fc/fs.

gam— Quadrature amplitude demodulation. [x1,x2] = demod(y, fc,fs, 'qam') multiplies y
by a cosine and a sine of frequency fc and applies a fifth-order Butterworth lowpass filter using
filtfilt.

X1 = y.*cos(2*pi*fc*t);
X2 = y.*sin(2*pi*fc*t);
[b,a]l] = butter(5,fc*2/fs);
x1 = filtfilt(b,a,x1);
x2 = filtfilt(b,a,x2);

The input argument opt must be the same size as y.
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opt — Optional input for some methods
real vector

Optional input, specified for some methods. Refer to method for more details on how to use opt.

Output Arguments

x — Demodulated message signal
real vector | real matrix

Demodulated message signal, returned as a real vector or matrix.

See Also
fskdemod | genqamdemod | modulate | mskdemod | pamdemod | pmdemod | gamdemod | vco

Introduced before R2006a
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Design digital filters

Syntax
d = designfilt(resp,Name,Value)

designfilt(d)

Description

d = designfilt(resp,Name,Value) designs a digitalFilter object, d, with response type
resp. Specify the filter further using a set of Name, Value pairs. The allowed specification sets
depend on the response type, resp, and consist of combinations of the following:

* Frequency constraints correspond to the frequencies at which a filter exhibits a desired behavior.
Examples include 'PassbandFrequency' and 'CutoffFrequency'. (See the complete list
under “Name-Value Pair Arguments” on page 1-277.) You must always specify the frequency
constraints.

* Magnitude constraints describe the filter behavior at particular frequency ranges. Examples
include 'PassbandRipple' and 'StopbandAttenuation'. (See the complete list under
“Name-Value Pair Arguments” on page 1-277.) designfilt provides default values for magnitude
constraints left unspecified. In arbitrary-magnitude designs you must always specify the vectors of
desired amplitudes.

* 'FilterOrder'. Some design methods let you specify the order. Others produce minimum-order
designs. That is, they generate the smallest filters that satisfy the specified constraints.

* 'DesignMethod' is the algorithm used to design the filter. Examples include constrained least
squares ('cls') and Kaiser windowing ('kaiserwin'). For some specification sets, there are
multiple design methods available to choose from. In other cases, you can use only one method to
meet the desired specifications.

* Design options are parameters specific to a given design method. Examples include 'Window' for
the 'window' method and optimization 'Weights' for arbitrary-magnitude equiripple designs.
(See the complete list under “Name-Value Pair Arguments” on page 1-277.) designfilt provides
default values for design options left unspecified.

+ 'SampleRate’ is the frequency at which the filter operates. designfilt has a default sample
rate of 2 Hz. Using this value is equivalent to working with normalized frequencies.

Note If you specify an incomplete or inconsistent set of name-value pairs at the command line,
designfilt offers to open a “Filter Design Assistant” on page 1-283. The assistant helps you design
the filter and pastes the corrected MATLAB code on the command line.

If you call designfilt from a script or function with an incorrect set of specifications, designfilt
issues an error message with a link to open a “Filter Design Assistant” on page 1-283. The assistant
helps you design the filter, comments out the faulty code in the function or script, and pastes the
corrected MATLAB code on the next line.
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* Use filter in the form dataOut = filter(d,dataIn) to filter a signal with a
digitalFilter, d.

* Use FVTool to visualize a digitalFilter, d.

* Type d.Coefficients to obtain the coefficients of a digitalFilter, d. For IIR filters, the
coefficients are expressed as second-order sections.

* SeedigitalFilter for a list of the filtering and analysis functions available for use with
digitalFilter objects.

designfilt(d) lets you edit an existing digital filter, d. It opens a “Filter Design Assistant” on page
1-283 populated with the filter’s specifications, which you can then modify. This is the only way you
can edit a digitalFilter object. Its properties are otherwise read-only.

Examples

Lowpass FIR Filter

Design a minimum-order lowpass FIR filter with normalized passband frequency 0.25m rad/s,
stopband frequency 0. 351 rad/s, passband ripple 0.5 dB, and stopband attenuation 65 dB. Use a
Kaiser window to design the filter. Visualize its magnitude response. Use it to filter a vector of
random data.

lpFilt = designfilt('lowpassfir', 'PassbandFrequency',0.25,
'StopbandFrequency',0.35, 'PassbandRipple',0.5,
'StopbandAttenuation', 65, 'DesignMethod', 'kaiserwin');
fvtool(lpFilt)
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dataln = rand(1000,1);
dataOut = filter(lpFilt,dataln);

Lowpass lIR Filter

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Visualize the magnitude response of the filter.

lpFilt = designfilt('lowpassiir','FilterOrder',8, ...
'PassbandFrequency',35e3, 'PassbandRipple', 0.2,
'SampleRate',200e3);

fvtool(1lpFilt)
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Use the filter you designed to filter a 1000-sample random signal.

dataln = randn(1000,1);
dataOut = filter(lpFilt,dataIn);

Output the filter coefficients, expressed as second-order sections.

sos = lpFilt.Coefficients

S0S = 4x6
0.2666 0.5333
0.1943 0.3886
0.1012 0.2023
0.0318 0.0636

Highpass FIR Filter

Design a minimum-order highpass FIR filter with normalized stopband frequency 0.25m rad/s,

0.2666
0.1943
0.1012
0.0318

1.0000
1.0000
1.0000
1.0000

-0.8346
-0.9586
-1.1912
-1.3810

0.9073
0.7403
0.5983
0.5090

passband frequency 0. 35 rad/s, passband ripple 0.5 dB, and stopband attenuation 65 dB. Use a
Kaiser window to design the filter. Visualize its magnitude response. Use it to filter 1000 samples of

random data.

hpFilt = designfilt('highpassfir', 'StopbandFrequency',0.25,
'PassbandFrequency',0.35, 'PassbandRipple',0.5,
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'StopbandAttenuation', 65, 'DesignMethod', 'kaiserwin');
fvtool(hpFilt)
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datalIn = randn(1000,1);
dataOut = filter(hpFilt,dataln);

Highpass IIR Filter

Design a highpass IIR filter with order 8, passband frequency 75 kHz, and passband ripple 0.2 dB.
Specify a sample rate of 200 kHz. Visualize the filter's magnitude response. Apply the filter to a 1000-
sample vector of random data.

hpFilt = designfilt('highpassiir','FilterOrder',8 .
'PassbandFrequency',75e3, 'PassbandRipple',0.2,
'SampleRate',200e3);

fvtool (hpFilt)
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dataln = randn(1000,1);
dataOut = filter(hpFilt,dataln);

Bandpass FIR Filter

Design a 20th-order bandpass FIR filter with lower cutoff frequency 500 Hz and higher cutoff
frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it
to filter a random signal containing 1000 samples.

bpFilt = designfilt('bandpassfir','FilterOrder"',20,
'CutoffFrequencyl', 500, 'CutoffFrequency2',560,
'SampleRate',1500);

fvtool(bpFilt)
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dataln = randn(1000,1);
dataOut = filter(bpFilt,dataln);

Output the filter coefficients.
b

bpFilt.Coefficients
b = 1x21

-0.0113 0.0067 0.0125 -0.0445 0.0504 0.0101 -0.1070 0.1407 -0.0464

Bandpass IIR Filter

Design a 20th-order bandpass IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency
560 Hz. The sample rate is 1500 Hz. Visualize the frequency response of the filter. Use it to filter a
1000-sample random signal.

bpFilt = designfilt('bandpassiir','FilterOrder"',20, .
'"HalfPowerFrequencyl',500, 'HalfPowerFrequency2',560,
'SampleRate',1500);

fvtool(bpFilt)
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dataln = randn(1000,1);
dataOut = filter(bpFilt,dataln);

Bandstop FIR Filter

Design a 20th-order bandstop FIR filter with lower cutoff frequency 500 Hz and higher cutoff

frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it
to filter 1000 samples of random data.

bsFilt = designfilt('bandstopfir','FilterOrder"',20,

'CutoffFrequencyl',500, 'CutoffFrequency2',560,
'SampleRate',1500);
fvtool(bsFilt)

1-261



1 Functions

Magnitude Response (dB)
D _\_-\____I__ _-_I - T — T T -——I———IT._
o5} N\ _
\
1T \ 4
1.5

Magnitude (dB)
R
£n

". f
351 i\ f 1
| f
af \ -
45f N/ -
v
-5 i i i i i I_ B J i i |
0 100 200 300 400 500 600 700
Frequency (Hz)
dataln = randn(1000,1);

dataOut = filter(bsFilt,dataln);

Bandstop IIR Filter

Design a 20th-order bandstop IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB frequency
560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter. Use it to filter
1000 samples of random data.

bsFilt = designfilt('bandstopiir','FilterOrder',20, ...

'HalfPowerFrequencyl',b 500, 'HalfPowerFrequency2',560,

'SampleRate',1500);
fvtool(bsFilt)
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dataln = randn(1000,1);
dataOut = filter(bsFilt,dataln);

FIR Differentiator

Design a full-band differentiator filter of order 7. Display its zero-phase response. Use it to filter a
1000-sample vector of random data.

dFilt = designfilt('differentiatorfir', 'FilterOrder',7);
fvtool(dFilt, 'MagnitudeDisplay', 'Zero-phase')
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dataln = randn(1000,1);
dataOut = filter(dFilt,dataln);

FIR Hilbert Transformer

Design a Hilbert transformer of order 18. Specify a normalized transition width of 0.25m rad/s.
Display in linear units the magnitude response of the filter. Use it to filter a 1000-sample vector of
random data.

hFilt = designfilt('hilbertfir', 'FilterOrder',18, 'TransitionWidth',0.25);
fvtool(hFilt, 'MagnitudeDisplay', 'magnitude")
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dataln = randn(1000,1);

dataOut = filter(hFilt,dataln);

Arbitrary-Magnitude FIR Filter

You are given a signal sampled at 1 kHz. Design a filter that stops frequencies between 100 Hz and
350 Hz and frequencies greater than 400 Hz. Specify a filter order of 60. Visualize the frequency

response of the filter. Use it to filter a 1000-sample random signal.
mbFilt = designfilt('arbmagfir', 'FilterOrder',60,

'SampleRate',1000);
fvtool(mbFilt)

'Frequencies',0:50:500, 'Amplitudes',[1 110000110 0],
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dataln = randn(1000,1);
dataOut = filter(mbFilt,dataln);

Input Arguments

resp — Filter response and type
"lowpassfir' | 'lowpassiir' | "highpassfir' | 'highpassiir' | 'bandpassfir' |

"bandpassiir' | 'bandstopfir' | 'bandstopiir' | 'differentiatorfir' | "hilbertfir' |
"arbmagfir'

Filter response and type, specified as a character vector or string scalar. Click one of the possible
values of resp to expand a table of allowed specification sets.

"Llowpassfir'

Choose this option to design a finite impulse response (FIR) lowpass filter. This example uses the fifth
specification set from the following table.

d = designfilt('lowpassfir',
'FilterOrder',25, ...
'PassbandFrequency', 400,
'StopbandFrequency', 550,
'DesignMethod', 'ls"',
'PassbandWeight', 1,
'StopbandWeight', 2,
'SampleRate',2000)

Response type
Filter order
Frequency constraints

o° o o°

Design method
Design method options

o o°

o°

Sample rate
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* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

» If you omit the magnitude constraints, designfilt uses default values.

* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.

* If you omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | ' PassbandFrequen | 'PassbandRipple' |'equiripple’ N/A
design) cy' (default)
'StopbandAttenua Kaiserwin’ "ScalePassband”
'StopbandFrequen |tion' alse calerassba
cy'
'FilterOrder' 'HalfPowerFreque [N/A 'maxflat’ N/A
ncy'
'FilterOrder' 'CutoffFrequency [N/A 'window' 'Window'
'ScalePassband'
'FilterOrder' 'CutoffFrequency | 'PassbandRipple’ |'cls' 'PassbandOffset’
'StopbandAttenua 'ZeroPhase'
tion'
'FilterOrder' 'PassbandFrequen |[N/A 'equiripple’ 'PassbandWeight'
cy' (default)
'StopbandWeight'
;)S/‘IcopbandFrequen "s' 'PassbandWeight’
'StopbandWeight'
"Llowpassiir’

Choose this option to design an infinite impulse response (IIR) lowpass filter. This example uses the
first specification set from the following table.

d = designfilt('lowpassiir"',

'"PassbandFrequency', 400,

o° o°

'StopbandFrequency', 550,
'PassbandRipple’,4,
'StopbandAttenuation',55,

'DesignMethod', 'ellip’,
'MatchExactly', 'passband’,

'SampleRate',2000)

o°

o® o° of

Response type
Frequency constraints

Magnitude constraints
Design method

Design method options
Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

» If you omit the magnitude constraints, designfilt uses default values.
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* Ifyou omit 'DesignMethod’', designfilt uses the default design method for the specification

set.

* Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod"’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'PassbandFrequen | 'PassbandRipple' |'butter' (default) |'MatchExactly’
design) cy' ' . ' '
'StopbandAttenua chebyl MatchExactly
cy’ ‘ellip’ 'MatchExactly'
'FilterOrder' 'HalfPowerFreque [N/A '"butter!' N/A
ncy'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple’ |'chebyl! N/A
cy'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple' |'ellip'’ N/A
cy'
'StopbandAttenua
tion'
'FilterOrder' 'StopbandFrequen | 'StopbandAttenua | 'cheby?2' N/A
cy' tion'
"NumeratorOrder' | 'HalfPowerFreque |N/A 'butter!’ N/A
ncy'
‘DenominatorOrde
r.I
"highpassfir'

Choose this option to design a finite impulse response (FIR) highpass filter. This example uses the
first specification set from the following table.

d = designfilt('highpassfir',
'StopbandFrequency', 400,

o° of

'PassbandFrequency', 550,

'StopbandAttenuation',55,

'PassbandRipple’,4,

'DesignMethod', 'kaiserwin',
'ScalePassband', false,

'SampleRate',2000)

o°

o® o o°

Response type
Frequency constraints

Magnitude constraints
Design method

Design method options
Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

* Ifyou omit the magnitude constraints, designfilt uses default values.
* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.

» Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.
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+ Ifyou omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'StopbandFrequen | 'StopbandAttenua |'equiripple’ N/A
design) cy' tion' (default)
'PassbandFrequen | 'PassbandRipple’ ‘kaiserwin 'ScalePassband’
cy'
'FilterOrder' 'CutoffFrequency [N/A 'window' 'Window'
'ScalePassband'
'FilterOrder' 'CutoffFrequency | 'StopbandAttenua|'cls' 'PassbandOffset’
' tion'
'ZeroPhase'
'PassbandRipple’
'FilterOrder' 'StopbandFrequen [N/A 'equiripple’ 'PassbandWeight'
cy' (default)
'StopbandWeight'
;;?ssbandFrequen s 'PassbandWeight '
'StopbandWeight'
"highpassiir'

Choose this option to design an infinite impulse response (IIR) highpass filter. This example uses the
first specification set from the following table.

d = designfilt('highpassiir',
'StopbandFrequency', 400,

o® o°

'PassbandFrequency', 550,

'StopbandAttenuation',55,

'PassbandRipple’,4,

'DesignMethod', 'chebyl .
'MatchExactly', 'stopband',

'SampleRate',2000)

o°

o® o° o°

Response type
Frequency constraints

Magnitude constraints
Design method

Design method options
Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

» If you omit the magnitude constraints, designfilt uses default values.
* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.

* Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.
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Filter Order Frequency Magnitude 'DesignMethod" Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'StopbandFrequen | 'StopbandAttenua | 'butter' (default) |'MatchExactly'
design) cy’ tion’ 'chebyl! 'MatchExactly'
'PassbandFrequen | 'PassbandRipple’ | 'cheby2" ‘MatchExactly"
cy' ‘ellip’ 'MatchExactly'
'FilterOrder' 'HalfPowerFreque [N/A 'butter!' N/A
ncy'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple’ |'chebyl! N/A
cy'
'FilterOrder' 'PassbandFrequen | 'StopbandAttenua |'ellip’ N/A
cy' tion'
'PassbandRipple’
'FilterOrder' 'StopbandFrequen | 'StopbandAttenua | 'cheby?2' N/A
cy' tion'
"NumeratorOrder' | 'HalfPowerFreque |[N/A '"butter!' N/A
ncy'
‘DenominatorOrde
r.I
'bandpassfir’

Choose this option to design a finite impulse response (FIR) bandpass filter. This example uses the
fourth specification set from the following table.

d = designfilt('bandpassfir',

'FilterOrder', 86,

'StopbandFrequencyl', 400,

o® o o°

'PassbandFrequencyl’, 450,
'PassbandFrequency2',600,
'StopbandFrequency2',650,
'DesignMethod', 'ls',
'StopbandWeightl',1,
'PassbandWeight', 2,
'StopbandWeight2',3,
‘SampleRate',2000)

o° of

o°

Response type
Filter order
Frequency constraints

Design method
Design method options

Sample rate

o Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

* Ifyou omit the magnitude constraints, designfilt uses default values.
* Ifyou omit 'DesignMethod’, designfilt uses the default design method for the specification

set.

» Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.
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Filter Order Frequency Magnitude 'DesignMethod" Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'StopbandFrequen | 'StopbandAttenua |'equiripple’ N/A
design) cyl' tionl' (default)
'PassbandFrequen | 'PassbandRipple’ sy ‘ScalePassband
cyl'
'StopbandAttenua
'PassbandFrequen [tion2'
cy2'
'StopbandFrequen
cy2'
'FilterOrder' 'CutoffFrequency [N/A 'window' 'Window'
1 1
'ScalePassband'
'CutoffFrequency
2 1
'FilterOrder' 'CutoffFrequency | 'StopbandAttenua |'cls' 'PassbandOffset’
1' tionl'
'ZeroPhase'
'CutoffFrequency | 'PassbandRipple’
2 1
'StopbandAttenua
tion2'
'FilterOrder' 'StopbandFrequen |[N/A 'equiripple’ 'StopbandWeightl
cyl' (default) '
'PassbandFrequen 'PassbandWeight’
cyl'
'StopbandWeight?2
'PassbandFrequen '
cy2’ EY 'StopbandWeightl
'StopbandFrequen
cy2’ 'PassbandWeight’
'StopbandWeight?2
'bandpassiir’

Choose this option to design an infinite impulse response (IIR) bandpass filter. This example uses the
first specification set from the following table.

d = designfilt('bandpassiir’,
'StopbandFrequencyl',b 400,

%
%

'PassbandFrequencyl’,b 450,
'PassbandFrequency2',600,
'StopbandFrequency2',650,

'StopbandAttenuationl', 40,

'PassbandRipple’,1,

Response type
Frequency constraints

% Magnitude constraints
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'StopbandAttenuation2',50,

'DesignMethod', 'ellip’,
'MatchExactly', 'passband’,

'SampleRate',2000)

o® o° o°

Design method
Design method options
Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

» If you omit the magnitude constraints, designfilt uses default values.

* Ifyou omit 'DesignMethod’', designfilt uses the default design method for the specification

set.

* Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |(Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'StopbandFrequen | 'StopbandAttenua | 'butter' (default) |'MatchExactly’
design) cyl' tionl' "Cheby1' "MatchExactly'
‘PassbandFrequen | 'passbandRipple' |'cheby?2' 'MatchExactly'
CylI 1 s 1 1 1
| 'StopbandAttenua ellip MatchExactly
PassbandFrequen (;on2"
cy2'
'StopbandFrequen
cy2'
'FilterOrder' 'HalfPowerFreque [N/A "butter! N/A
ncyl'
'HalfPowerFreque
ncy2'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple’' |'chebyl! N/A
cyl'
'PassbandFrequen
cy2'
'FilterOrder' 'PassbandFrequen | 'StopbandAttenua |'ellip' N/A
cyl' tionl'
'PassbandFrequen | 'PassbandRipple’
cy2'
'StopbandAttenua
tion2'
'FilterOrder' 'StopbandFrequen | 'StopbandAttenua | 'cheby2' N/A
cyl' tion'
'StopbandFrequen
cy2'
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'bandstopfir'

Choose this option to design a finite impulse response (FIR) bandstop filter. This example uses the

fourth specification set from the following table.

d = designfilt('bandstopfir',
'FilterOrder',32,
'PassbandFrequencyl’,b 400,
'StopbandFrequencyl', 500,
'StopbandFrequency2',700,
'PassbandFrequency2',850,
'DesignMethod', '1s"',
'PassbandWeightl', 1,
'StopbandWeight', 3,
'PassbandWeight2',5,
'SampleRate',2000)

o® o° o°

o® o°

o°

* Ifyouomit 'FilterOrder' (when required),

throws an error.

Response type
Filter order
Frequency constraints

Design method
Design method options

Sample rate

or any of the frequency constraints, designfilt

» If you omit the magnitude constraints, designfilt uses default values.

* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.

* Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod" Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'PassbandFrequen | 'PassbandRipplel |'equiripple’ N/A
design) cyl' ' (default)
'StopbandFrequen | 'StopbandAttenua ‘kaiserwin' ‘ScalePassband’
cyl' tion'
'StopbandFrequen | 'PassbandRipple2
Cy2 1 1
'PassbandFrequen
cy2'
'FilterOrder' 'CutoffFrequency [N/A 'window' '"Window'
1I
'ScalePassband'
'CutoffFrequency
2 1
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Filter Order Frequency Magnitude 'DesignMethod" Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'CutoffFrequency | 'PassbandRipplel | 'cls' 'PassbandOffset’
1 1 1
'ZeroPhase'
'CutoffFrequency | 'StopbandAttenua
2! tion'
'PassbandRipple2
'FilterOrder' 'PassbandFrequen [N/A 'equiripple’ 'PassbandWeightl
cyl' (default) '
'StopbandFrequen 'StopbandWeight'
cyl'
'PassbandWeight?2
'StopbandFrequen '
cy2’ s 'PassbandWeightl
'PassbandFrequen
cy2' 'StopbandWeight'
'PassbandWeight?2
'bandstopiir’

Choose this option to design an infinite impulse response (IIR) bandstop filter. This example uses the
first specification set from the following table.

d = designfilt('bandstopiir’,
'PassbandFrequencyl’,b 400,

o° o°

'StopbandFrequencyl', 500,
'StopbandFrequency2',700,
'PassbandFrequency2',850,
'"PassbandRipplel’, 1,
'StopbandAttenuation',55,
'"PassbandRipple2’,1,

'DesignMethod', 'ellip’,
'MatchExactly', 'both',

'SampleRate',2000)

o°

o® o° o°

Response type
Frequency constraints

Magnitude constraints

Design method
Design method options
Sample rate

* Ifyouomit 'FilterOrder' (when required), or any of the frequency constraints, designfilt
throws an error.

* Ifyou omit the magnitude constraints, designfilt uses default values.

* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.

» Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate’', designfilt sets it to 2 Hz.
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Filter Order Frequency Magnitude 'DesignMethod" Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
N/A (Minimum-order | 'PassbandFrequen | 'PassbandRipplel | 'butter' (default) |'MatchExactly'
design) cyl’ ' 'chebyl! 'MatchExactly'
‘StopbandFrequen | 'StopbandAttenua | ' cheby2' 'MatchExactly'
eyl tion' ‘ellip’ 'MatchExactly'
'StopbandFrequen 'PassbandRipple2
cy2' '
'PassbandFrequen
cy2'
'FilterOrder' 'HalfPowerFreque [N/A 'butter!' N/A
ncyl'
'"HalfPowerFreque
ncy2'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple’' |'chebyl! N/A
cyl'
'PassbandFrequen
cy2'
'FilterOrder' 'PassbandFrequen | 'PassbandRipple' |'ellip' N/A
cyl'
'StopbandAttenua
'PassbandFrequen [tion'
cy2'
'FilterOrder' 'StopbandFrequen | 'StopbandAttenua | 'cheby?2' N/A
cyl' tion'
'StopbandFrequen
cy2'
'differentiatorfir’

Choose this option to design a finite impulse response (FIR) differentiator filter. This example uses
the second specification set from the following table.

d = designfilt('differentiatorfir’',

'FilterOrder',42,

'"PassbandFrequency', 400,

o® o° o°

'StopbandFrequency', 500,

'DesignMethod’, 'equiripple’,

'PassbandWeight', 1,
'StopbandWeight',4,
'SampleRate',2000)

o° o°

o°

Response type
Filter order
Frequency constraints

Design method
Design method options

Sample rate

* Ifyouomit 'FilterOrder', or any of the frequency constraints when designing a partial-band
differentiator, designfilt throws an error.

* Ifyou omit 'DesignMethod', designfilt uses the default design method for the specification

set.
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» Ifyou omit the design method options, designfilt uses the defaults for the design method of

choice.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' N/A N/A 'equiripple’ N/A
(default)
"ls' N/A
'FilterOrder' 'PassbandFrequen |[N/A 'equiripple’ 'PassbandWeight’
cy' (default)
'StopbandWeight'
'StopbandFrequen s N/A
cy'
"hilbertfir'

Choose this option to design a finite impulse response (FIR) Hilbert transformer filter. This example
uses the specification set from the following table.

d = designfilt('hilbertfir"',

'"FilterOrder',12,

'"TransitionWidth', 400,

'DesignMethod', 'ls',
‘SampleRate',2000)

o® o of o° o°

Response type

Filter order
Frequency constraints
Design method

Sample rate

* Ifyouomit 'FilterOrder' or 'TransitionWidth', designfilt throws an error.

* Ifyou omit 'DesignMethod', designfilt uses the default design method for Hilbert
transformers.

* Ifyou omit 'SampleRate', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'TransitionWidth [N/A 'equiripple’ N/A
' (default)
'ls' N/A
'arbmagfir'

Choose this option to design a finite impulse response (FIR) filter of arbitrary magnitude response.
This example uses the second specification set from the following table.

d = designfilt('arbmagfir',
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'FilterOrder',88,
"NumBands', 4,

'BandFrequenciesl', [0 20],

o® o° o°

'BandFrequencies2',[25 40],
'BandFrequencies3', [45 65], ..
'BandFrequencies4',[70 100],

'BandAmplitudesl',[2 2],

o°

Response type
Filter order
Frequency constraints

Magnitude constraints
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'BandAmplitudes2',[0 0],
'BandAmplitudes3',[1 1],
'BandAmplitudes4',[0 0],
'DesignMethod', 'ls', ...
'BandWeightsl',[1 1]/10,
'BandWeights2',[3 1],
'BandWeights3',[2 4],
'BandWeights4',[5 1],
'SampleRate',200)

esign method
esign method options

o O

%
%

% Sample rate
* Ifyouomit 'FilterOrder', or any of the frequency or magnitude constraints, designfilt
throws an error.

* Ifyou omit 'DesignMethod’', designfilt uses the default design method for the specification
set.

* Ifyou omit the design method options, designfilt uses the defaults for the design method of
choice.

* Ifyou omit 'SampleRate’', designfilt sets it to 2 Hz.

Filter Order Frequency Magnitude 'DesignMethod’ Design Option
Argument Names |Constraint Constraint Argument Values |Argument Names
Argument Names |Argument Names
'FilterOrder' 'Frequencies' "Amplitudes’ 'freqsamp' '"Window'
(default)
'equiripple’ 'Weights'
"ls' 'Weights'
'FilterOrder' 'BandFrequencies | 'BandAmplitudesl |'equiripple’ 'BandWeightsl'
1 ' (default)
"NumBands''
'BandWeightsN'
'BandFrequencies | 'BandAmplitudesN s 'Bandweights1'
NI 1
'BandWeightsN'

Data Types: char | string

d — Digital filter
digitalFilter object

Digital filter, specified as a digitalFilter object generated by designfilt. Use this input to
change the specifications of an existing digitalFilter.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Not all combinations of Name, Value pairs are valid. The valid combinations depend on the filter
response that you need and on the frequency and magnitude constraints of your design.
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Example: 'FilterOrder',20, 'CutoffFrequency', 0.4 suffices to specify a lowpass FIR filter.

Filter Order

FilterOrder — Filter order
positive integer scalar

Filter order, specified as the comma-separated pair consisting of 'FilterOrder' and a positive
integer scalar.

Data Types: double

NumeratorOrder — Numerator order
positive integer scalar

Numerator order of an IIR design, specified as the comma-separated pair consisting of
"NumeratorOrder' and a positive integer scalar.

Data Types: double

DenominatorOrder — Denominator order
positive integer scalar

Denominator order of an IIR design, specified as the comma-separated pair consisting of
'DenominatorOrder' and a positive integer scalar.

Data Types: double
Frequency Constraints

PassbandFrequency, PassbandFrequencyl, PasshandFrequency2 — Passband frequency
positive scalar

Passband frequency, specified as the comma-separated pair consisting of 'PassbandFrequency’
and a positive scalar. The frequency value must be within the Nyquist range.

"PassbandFrequencyl’ is the lower passband frequency for a bandpass or bandstop design.

'PassbandFrequency2' is the higher passband frequency for a bandpass or bandstop design.
Data Types: double

StopbandFrequency, StopbandFrequencyl, StopbandFrequency2 — Stopband frequency
positive scalar

Stopband frequency, specified as the comma-separated pair consisting of 'StopbandFrequency'
and a positive scalar. The frequency value must be within the Nyquist range.

'StopbandFrequencyl’ is the lower stopband frequency for a bandpass or bandstop design

'StopbandFrequency?2' is the higher stopband frequency for a bandpass or bandstop design.
Data Types: double

CutoffFrequency, CutoffFrequencyl, CutoffFrequency2 — 6-dB frequency
positive scalar

6-dB frequency, specified as the comma-separated pair consisting of ' CutoffFrequency' and a
positive scalar. The frequency value must be within the Nyquist range.
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'"CutoffFrequencyl’ is the lower 6-dB frequency for a bandpass or bandstop design.

"CutoffFrequency?2' is the higher 6-dB frequency for a bandpass or bandstop design.
Data Types: double

HalfPowerFrequency, HalfPowerFrequencyl, HalfPowerFrequency2 — 3-dB frequency
positive scalar

3-dB frequency, specified as the comma-separated pair consisting of 'HalfPowerFrequency' and a
positive scalar. The frequency value must be within the Nyquist range.

'"HalfPowerFrequencyl' is the lower 3-dB frequency for a bandpass or bandstop design.

'"HalfPowerFrequency?2' is the higher 3-dB frequency for a bandpass or bandstop design.
Data Types: double

TransitionWidth — Width of transition region
positive scalar

Width of the transition region between passband and stopband for a Hilbert transformer, specified as
the comma-separated pair consisting of 'TransitionWidth' and a positive scalar.

Data Types: double

Frequencies — Response frequencies
vector

Response frequencies, specified as the comma-separated pair consisting of 'Frequencies' and a
vector. Use this variable to list the frequencies at which a filter of arbitrary magnitude response has
desired amplitudes. The frequencies must be monotonically increasing and lie within the Nyquist
range. The first element of the vector must be either 0 or -f,/2, where f; is the sample rate, and its
last element must be f,/2. If you do not specify a sample rate, designfilt uses the default value of
2 Hz.

Data Types: double

NumBands — Number of bands
positive integer scalar

Number of bands in a multiband design, specified as the comma-separated pair consisting of
"NumBands' and a positive integer scalar not greater than 10.

Data Types: double

BandFrequenciesl, ..., BandFrequenciesN — Multiband response frequencies
vectors

Multiband response frequencies, specified as comma-separated pairs consisting of
'BandFrequenciesi' and a numeric vector. 'BandFrequenciesi', where i runs from 1 through
NumBands, is a vector containing the frequencies at which the ith band of a multiband design has the
desired values, 'BandAmplitudesi'. NumBands can be at most 10. The frequencies must lie within
the Nyquist range and must be specified in monotonically increasing order. Adjacent frequency bands
must have the same amplitude at their junction.

Data Types: double
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Magnitude Constraints

PassbandRipple, PasshandRipplel, PassbandRipple2 — Passband ripple
1 (default) | positive scalar

Passband ripple, specified as the comma-separated pair consisting of 'PassbandRipple' and a
positive scalar expressed in decibels.

'PassbandRipplel’ is the lower-band passband ripple for a bandstop design.

"PassbandRipple2’ is the higher-band passband ripple for a bandstop design.
Data Types: double

StopbandAttenuation, StopbandAttenuationl, StopbandAttenuation2 — Stopband
attenuation
60 (default) | positive scalar

Stopband attenuation, specified as the comma-separated pair consisting of
'StopbandAttenuation' and a positive scalar expressed in decibels.

'StopbandAttenuationl’ is the lower-band stopband attenuation for a bandpass design.

'StopbandAttenuation2' is the higher-band stopband attenuation for a bandpass design.
Data Types: double

Amplitudes — Desired response amplitudes
vector

Desired response amplitudes of an arbitrary magnitude response filter, specified as the comma-
separated pair consisting of 'Amplitudes' and a vector. Express the amplitudes in linear units. The
vector must have the same length as ' Frequencies'.

Data Types: double

BandAmplitudesl, ..., BandAmplitudesN — Multiband response amplitudes
vectors

Multiband response amplitudes, specified as comma-separated pairs consisting of
'BandAmplitudesi' and a numeric vector. 'BandAmplitudesi', where i runs from 1 through
NumBands, is a vector containing the desired amplitudes in the ith band of a multiband design.
NumBands can be at most 10. Express the amplitudes in linear units. 'BandAmplitudesi' must
have the same length as 'BandFrequenciesi'. Adjacent frequency bands must have the same
amplitude at their junction.

Data Types: double

Design Method

DesignMethod — Design method
"butter' | 'chebyl' | 'cheby2' | 'cls' | 'ellip' | 'equiripple’ | 'freqsamp"' |
'kaiserwin' | 'ls' | 'maxflat’' | 'window'

Design method, specified as the comma-separated pair consisting of 'DesignMethod' and a
character vector or string scalar. The choice of design method depends on the set of frequency and
magnitude constraints that you specify.
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* 'butter' designs a Butterworth IIR filter. Butterworth filters have a smooth monotonic
frequency response that is maximally flat in the passband. They sacrifice rolloff steepness for
flatness.

* 'chebyl' designs a Chebyshev type I IIR filter. Chebyshev type I filters have a frequency
response that is equiripple in the passband and maximally flat in the stopband. Their passhand
ripple increases with increasing rolloff steepness.

* 'cheby?2' designs a Chebyshev type II IIR filter. Chebyshev type II filters have a frequency
response that is maximally flat in the passband and equiripple in the stopband.

* 'cls' designs an FIR filter using constrained least squares. The method minimizes the
discrepancy between a specified arbitrary piecewise-linear function and the filter’s magnitude
response. At the same time, it lets you set constraints on the passband ripple and stopband
attenuation.

+ 'ellip' designs an elliptic IIR filter. Elliptic filters have a frequency response that is equiripple
in both passband and stopband.

* 'equiripple' designs an equiripple FIR filter using the Parks-McClellan algorithm. Equiripple
filters have a frequency response that minimizes the maximum ripple magnitude over all bands.

 'freqgsamp' designs an FIR filter of arbitrary magnitude response by sampling the frequency
response uniformly and taking the inverse Fourier transform.

* 'kaiserwin' designs an FIR filter using the Kaiser window method. The method truncates the
impulse response of an ideal filter and uses a Kaiser window to attenuate the resulting truncation
oscillations.

* '1ls' designs an FIR filter using least squares. The method minimizes the discrepancy between a
specified arbitrary piecewise-linear function and the filter’s magnitude response.

* 'maxflat' designs a maximally flat FIR filter. These filters have a smooth monotonic frequency
response that is maximally flat in the passband.

* 'window' uses a least-squares approximation to compute the filter coefficients and then smooths
the impulse response with 'Window'.

Data Types: char | string
Design Method Options

Window — Window
numeric vector | window name | function handle | cell array

Window, specified as the comma-separated pair consisting of 'Window' and a vector of length N + 1,
where N is the filter order. 'Window' can also be paired with a window name or function handle that
specifies the function used to generate the window. Any such function must take N + 1 as first input.
Additional inputs can be passed by specifying a cell array. By default, 'Window"' is an empty vector
for the 'fregsamp' design method and @hamming for the 'window' design method.

For a list of available windows, see “Windows”.

Example: 'Window',hann(N+1) and 'Window', (1-cos(2*pi*(0:N)'/N))/2 both specify a
Hann window to use with a filter of order N.

Example: 'Window', "hamming' specifies a Hamming window of the required order.
Example: 'Window',@mywindow lets you define your own window function.

Example: 'Window', {@kaiser,0.5} specifies a Kaiser window of the required order with shape
parameter 0.5.
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Data Types: double | char | string | function handle | cell

MatchExactly — Band to match exactly
'stopband’' | 'passband' | 'both'

Band to match exactly, specified as the comma-separated pair consisting of 'MatchExactly' and
either 'stopband', 'passband’, or 'both'. 'both' is available only for the elliptic design
method, where it is the default. 'stopband' is the default for the 'butter' and 'cheby2’
methods. 'passband’ is the default for ' chebyl'.

Data Types: char | string

Passband0Offset — Passband offset
0 (default) | positive scalar

Passband offset, specified as the comma-separated pair consisting of 'Passband0ffset' and a
positive scalar expressed in decibels. 'PassbandOffset' specifies the filter gain in the passband.

Example: 'PassbandOffset', 0 results in a filter with unit gain in the passband.
Example: 'PassbandOffset', 2 results in a filter with a passband gain of 2 dB or 1.259.
Data Types: double

ScalePassband — Scale passband
true (default) | false

Scale passband, specified as the comma-separated pair consisting of 'ScalePassband' and a logical
scalar. When you set 'ScalePassband' to true, the passband is scaled, after windowing, so that
the filter has unit gain at zero frequency.

Example: 'Window', {@kaiser,0.1}, 'ScalePassband', true help specify a filter whose
magnitude response at zero frequency is exactly 0 dB. This is not the case when you specify
'ScalePassband', false. To verify, visualize the filter with fvtool and zoom in.

Data Types: logical

ZeroPhase — Zero phase
false (default) | true

Zero phase, specified as the comma-separated pair consisting of ' ZeroPhase' and a logical scalar.
When you set 'ZeroPhase' to true, the zero-phase response of the resulting filter is always
positive. This lets you perform spectral factorization on the result and obtain a minimum-phase filter
from it.

Data Types: logical

PassbandWeight, PassbandWeightl, PassbhandWeight2 — Passband optimization weight
1 (default) | positive scalar

Passband optimization weight, specified as the comma-separated pair consisting of
'PassbandWeight' and a positive scalar.

'PassbandWeightl’ is the lower-band passband optimization weight for a bandstop FIR design.

'PassbandWeight?2' is the higher-band passband optimization weight for a bandstop FIR design.
Data Types: double
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StopbandWeight, StopbandWeightl, StopbandWeight2 — Stopband optimization weight
1 (default) | positive scalar

Stopband optimization weight, specified as the comma-separated pair consisting of
'StopbandWeight' and a positive scalar.

'StopbandWeightl' is the lower-band stopband optimization weight for a bandpass FIR design.

'StopbandWeight?2' is the higher-band stopband optimization weight for a bandpass FIR design.
Data Types: double

Weights — Optimization weights
1 (default) | positive scalar | vector

Optimization weights, specified as the comma-separated pair consisting of 'Weights' and a positive
scalar or a vector of the same length as 'Amplitudes’'.

Data Types: double

BandWeightsl, ..., BandWeightsN — Multiband weights
1 (default) | positive scalar | vectors

Multiband weights, specified as comma-separated pairs consisting of 'BandWeightsi' and a set of
positive scalars or of vectors. 'BandWeightsi', where i runs from 1 through NumBands, is a scalar
or vector containing the optimization weights of the ith band of a multiband design. If specified as a
vector, 'BandWeightsi' must have the same length as 'BandAmplitudesi’.

Data Types: double

Sample Rate

SampleRate — Sample rate
2 (default) | positive scalar

Sample rate, specified as the comma-separated pair consisting of ' SampleRate' and a positive

scalar expressed in hertz. To work with normalized frequencies, set 'SampleRate' to 2, or simply
omit it.

Data Types: double
Output Arguments

d — Digital filter
digitalFilter object

Digital filter, returned as a digitalFilter object.

More About

Filter Design Assistant

If you specify an incomplete or inconsistent set of design parameters, designfilt offers to open a
Filter Design Assistant.
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(In the argument description for resp there is a complete list of valid specification sets for all
available response types.)

The assistant behaves differently if you call designfilt at the command line or within a script or
function.

Filter Design Assistant at the Command Line

You are given a signal sampled at 2 kHz. You are asked to design a lowpass FIR filter that suppresses
frequency components higher than 650 Hz. The “cutoff frequency” sounds like a good candidate for a
specification parameter. At the MATLAB command line, you type the following.

Fsamp = 2e3;

Fctff = 650;

dee = designfilt('lowpassfir', 'CutoffFrequency',Fctff,
'SampleRate',Fsamp);

Something seems to be amiss because this dialog box appears on your screen.

B Filter Design Assistant [= |

Filter Design Assistance is available.
Error detected when calling designfilt
‘You must specify a valid set of specifications

Use the Filter Design Assistant to generate MATLAB code with valid syntax
and filter specifications

Would you like to launch the Filter Design Assistant?

[ Do not show this message again

You click Yes and get a new dialog box that offers to generate code. You see that the variables you
defined before have been inserted where expected.

4\ Filter Design Assistant [ = ]

Lowpass FIR Design

Generate code using the designfilt function

Filter specifications

Order mode: [Speclfy -

Order: 10

Frequency specifications

Frequency constraints: [Cutuf‘f (6dB) frequency he

Frequency units: Input sample rate: Fsamp

Cutoff (6dB) frequency: Fctff

Magnitude specifications

Magnitude constraints: |Unconstrained -

Algorithm

Design method: | Window he

¥ Design options

[ OK H Cancel ][ Help ]

After exploring some of the options offered, you decide to test the corrected filter. You click OK and
get the following code on the command line.

dee = designfilt('lowpassfir', 'FilterOrder', 10, ...
'"CutoffFrequency', Fctff, 'SampleRate', Fsamp);
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Typing the name of the filter reiterates the information from the dialog box.
dee

dee =
digitalFilter with properties:

Coefficients: [1x11l double]
Specifications:
FrequencyResponse: 'lowpass'
ImpulseResponse: 'fir'
SampleRate: 2000
FilterOrder: 10
CutoffFrequency: 650
DesignMethod: 'window'
Use fvtool to visualize filter
Use filter function to filter data

You invoke FVTool and get a plot of dee’s frequency response.

fvtool(dee)

rl] Filter Visualization Tool - Figure 1: Magnitude Response (B ‘ [E=REE
File Edit Analysic Inset View Debug Desktop Window Help alax
DER|K|OTNN\uU| &« a3 EE HoaO

EUE# 40 @i

| Figure 1; Magnitude Respanse (dB) |

Magnitude Response (dB)

Magnitude (dB)

i i i i i i i i i
0 100 200 300 400 500 600 700 800 900
Frequency (Hz)

The cutoff does not look particularly sharp. The response is above 40 dB for most frequencies. You
remember that the assistant had an option to set up a “magnitude constraint” called the “stopband
attenuation”. Open the assistant by calling designfilt with the filter name as input.

designfilt(dee)

Click the Magnitude constraints drop-down menu and select Passband ripple and
stopband attenuation. You see that the design method has changed from Window to FIR
constrained least-squares. The default value for the attenuation is 60 dB, which is higher than
40. Click OK and visualize the resulting filter.

dee = designfilt('lowpassfir', 'FilterOrder', 10,
'CutoffFrequency', Fctff,
'PassbandRipple', 1, 'StopbandAttenuation', 60,
'SampleRate', Fsamp);

fvtool(dee)
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u Filter Visualization Teol - Figure 3: Magnitude Response (dB) | = |8 = ‘
Eile Edit Analysis Inset View Debug Desktop Window Help oA X
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The cutoff still does not look sharp. The attenuation is indeed 60 dB, but for frequencies above
900 Hz.

Again invoke designfilt with your filter as input.

designfilt(dee)

The assistant reappears.

4\ Filter Design Assistant @

Lowpass FIR Design

Generate code using the designfilt function

Filter specifications

Order mode: [Speclfy -

Order: 10

Frequency specifications

Frequency constraints: [Cutoﬁ (6dB) frequency -

Frequency units: Hz > | Input sample rate: 2000

Cutoff (6dB) frequency: 650

Magnitude specifications

Magnitude constraints: |Passband ripple and stopband attenuation -
Magnitude units: dB

Passhand ripple: 1 Stopband attenuation: 60

Algorithm

Design method: | FIR constrained least-squares -

» Design options

[ 0K ][ Cancel H Help I

To narrow the distinction between accepted and rejected frequencies, increase the order of the filter
or change Frequency constraints from Cutoff (6dB) frequency to Passband and
stopband frequencies. If you change the filter order from 10 to 50, you get a sharper filter.

dee = designfilt('lowpassfir', 'FilterOrder', 50,
'"CutoffFrequency', 650, ...
'PassbandRipple', 1, 'StopbandAttenuation', 60,
'SampleRate', 2000);

fvtool(dee)
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u Filter Visualization Teol - Figure 4: Magnitude Response (dB) =EECE X
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A little experimentation shows that you can obtain a similar filter by setting the passband and

stopband frequencies respectively to 600 Hz and 700 Hz.

dee = designfilt('lowpassfir', 'PassbandFrequency', 600,
'StopbandFrequency', 700,

'PassbandRipple', 1, 'StopbandAttenuation', 60,

‘SampleRate', 2000);

fvtool(dee)

uFl\tar\}\'sual'\zalionToo\—Figur’eS:Magniludekespcnse(dB) |.‘:' ] = ‘
File Edit Analysis Inset View Debug Desktop Window Help ¥ AxX
D&R| K| OTNNN\GQ| &« a3 EE B oaO
[ET)f) B 2 & [T+ BB b €

#1 | Figure 3: Magnitude Response (dB) Figure 4 Magnitude Respanse Figure 5: Magnitude Respanse (dB)

Magnitude Response (dB)

Magnitude (dB)

|
500 600 700 800 900
Frequency (Hz)

1 1 |
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Filter Design Assistant in a Script or Function

You are given a signal sampled at 2 kHz. You are asked to design a highpass filter that stops

frequencies below 700 Hz. You don’t care about the phase of the signal, and you need to work with a
low-order filter. Thus an IIR filter seems adequate. You are not sure what filter order is best, so you

write a function that accepts the order as input. Open the MATLAB Editor and create the file.

function dataOut = hipassfilt(N,dataln)
hpFilter = designfilt('highpassiir','FilterOrder',N);
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dataOut = filter(hpFilter,dataln);
end

To test your function, create a signal composed of two sinusoids with frequencies 500 and 800 Hz and
generate samples for 0.1 s. A Sth-order filter seems reasonable as an initial guess. Create a script
called driveHPfilt.m.

% script driveHPfilt.m

Fsamp = 2e3;
Fsm = 500;
Fbg = 800;

t = 0:1/Fsamp:0.1;

sgin = sin(2*pi*Fsm*t)+sin(2*pi*Fbg*t);
Order = 5;

sgout = hipassfilt(Order,sgin);

When you run the script at the command line, you get an error message.

»» driveHPFilt
Errar using designfilt (line 457)

Click here)}to launch an assistant that can correct yvour code.
S

You have specified too few parameters for 'highpassiir'.
The following are valld parameter sets that are close to vour inputs:
- FilterOrder, HalfPowerFrequency
- FilterOrder, PassbandFrequency, PassbandRipple
- FilterOrder, PasshandFrequency, Stopbandattenuation, PasshandRipple
- FilterOrder, StopbandFrequency, Stopbandattenuation

Errar in hipassfilt (line 2}

hpFilter = designfilt('highpassiir', 'FilterOrder',N);
Error in driveHPfilt (line 7)

sgout = hipassfilt{Order,sgin);

The error message gives you the choice of opening an assistant to correct the MATLAB code. Click
Click here to get the Filter Design Assistant on your screen.

- N
4\ Filter Design Assistant _ =

Highpass IR Design

Generate code using the designfilt function

Filter specifications

Order: N ["] benominator order: | 20

Frequency specifications

Frequency constraints: lHa\f power (3dB) frequency ']

Frequency units: Normalized (0 to 1) -

Half power (3dB) frequency: 0.5

Magnitude specifications

Magnitude constraints: lunmnsrrained v]

Algorithm

Design method: | Butterworth ']

[ OK H Cancel ” Help ]
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You see the problem: You did not specify the frequency constraint. You also forgot to set a sample
rate. After experimenting, you find that you can specify Frequency units as Hz, Passbhand
frequency equal to 700 Hz, and Input Fs equal to 2000 Hz. The Design method changes from
Butterworth to Chebyshev type I. You click OK and get the following.

Filter Design Assistant |g‘

Filter Design Assistant can correct your code at line 2 in:

hipassfilt.m
H-ihipassfit m

The current call to designfilt will be commented out

Would you like to allow this change?

Always accept Yes No

The assistant has correctly identified the file where you call designfilt. Click Yes to accept the
change. The function has the corrected MATLAB code.

function dataOut = hipassfilt(N,dataln)

% hpFilter = designfilt('highpassiir','FilterOrder',N);

hpFilter = designfilt('highpassiir', 'FilterOrder', N, ...
'PassbandFrequency', 700, 'PassbandRipple', 1,
'SampleRate', 2000);

dataOut = filter(hpFilter,dataln);

end

You can now run the script with different values of the filter order. Depending on your design
constraints, you can change your specification set.

Filter Design Assistant Preferences

You can set designfilt to never offer the Filter Design Assistant. This action sets a MATLAB
preference that can be unset with setpref:

* Use setpref('dontshowmeagain', 'filterDesignAssistant', false) to be offered the
assistant every time. With this command, you can get the assistant again after having disabled it.

* Use setpref('dontshowmeagain', 'filterDesignAssistant', true) to disable the
assistant permanently. You can also click Do not show this message again in the initial dialog
box.

You can set designfilt to always correct faulty specifications without asking. This action sets a
MATLAB preference that can be unset by using setpref:

* Use setpref('dontshowmeagain', 'filterDesignAssistantCodeCorrection', false)
to have designfilt correct your MATLAB code without asking for confirmation. You can also
click Always accept in the confirmation dialog box.

* Use setpref('dontshowmeagain', 'filterDesignAssistantCodeCorrection',true) to
ensure that designfilt corrects your MATLAB code only when you confirm you want the
changes. With this command, you can undo the effect of having clicked Always accept in the
confirmation dialog box.

Troubleshooting

There are some instances in which, given an invalid set of specifications, designfilt does not offer
a Filter Design Assistant, either through a dialog box or through a link in an error message.
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* You are not offered an assistant if you use code-section evaluation, either from the MATLAB
Toolstrip or by pressing Ctrl+Enter. (See “Divide Your File into Code Sections” for more
information.)

* You are not offered an assistant if your code has multiple calls to designfilt, at least one of
those calls is incorrect, and

* You paste the code on the command line and execute it by pressing Enter.
* You select the code in the Editor and execute it by pressing F9.

* You are not offered an assistant if you run designfilt using an anonymous function. (See
“Anonymous Functions” for more information.) For example, this input offers an assistant.

d = designfilt('lowpassfir', 'CutoffFrequency',0.6)
This input does not.

myFilterDesigner = @designfilt;
d = myFilterDesigner('lowpassfir', 'CutoffFrequency',0.6)

* You are not offered an assistant if you run designfilt using eval. For example, this input offers
an assistant.

d = designfilt('lowpassfir', 'CutoffFrequency',0.6)
This input does not.

myFilterDesigner = ...
sprintf('designfilt(''%ss"'"', "' 'CutoffFrequency'"',%f)",
'lowpassfir',0.6);
d = eval(myFilterDesigner)

The Filter Design Assistant requires Java® software and the MATLAB desktop to run. It is not
supported if you run MATLAB with the -nojvm, -nodisplay, or -nodesktop options.

See Also

FVTool | digitalFilter | double | fftfilt | filt2block | filter | filtfilt | filtord |
firtype | freqz | grpdelay | impz | impzlength | info | isallpass | isdouble | isfir |
islinphase | ismaxphase | isminphase | issingle | isstable | phasedelay | phasez |
single|ss | stepz | tf | zerophase | zpk | zplane

Topics

“Practical Introduction to Digital Filter Design”
“Filter Design Gallery”

“Practical Introduction to Digital Filtering”

Introduced in R2014a



dfilt

dfilt
Discrete-time filter

Syntax

Hd = dfilt.structure(inputl,...)

Description

Hd = dfilt.structure(inputl, ...) returns a discrete-time filter, Hd, of type structure. Each
structure takes one or more inputs. If you specify a dfilt.structure with no inputs, a default filter
is created.

Note You must use a structure with dfilt.

Hd = [dfilt.structure(inputl,...),dfilt.structure(inputl,...),...] returnsa
vector containing dfilt filters.

Structures
Available structures for the dfilt object are shown below. The target block for the block method

depends on the filter structure. Depending on the target block, the DSP System Toolbox software may
be required.

dfilt.structure Description Coefficient Mapping Target Filter Block for
Support in realizemdl block Method
dfilt.delay Delay Not supported Delay
Requires DSP System
Toolbox
dfilt.dfl Direct-form I Supported Discrete Filter
dfilt.dflsos Direct-form I, second-order |Supported Discrete Filter
sections
Requires DSP System
Toolbox
dfilt.dflt Direct-form I transposed Supported Discrete Filter
dfilt.dfltsos Direct-form I transposed, Supported Biquad Filter
second-order sections
Requires DSP System
Toolbox
dfilt.df2 Direct-form IT Supported Discrete Filter
dfilt.df2sos Direct-form II, second-order | Supported Discrete Filter
sections
dfilt.df2t Direct-form II transposed |Supported Discrete Filter
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dfilt.structure Description Coefficient Mapping Target Filter Block for
Support in realizemdl block Method
dfilt.df2tsos Direct-form II transposed, |Supported Biquad Filter
second-order sections

Requires DSP System
Toolbox

dfilt.dffir Direct-form FIR Supported Discrete FIR Filter

dfilt.dffirt Direct-form FIR transposed |Supported Discrete FIR Filter

dfilt.dfsymfir |Direct-form symmetric FIR |Supported Discrete FIR Filter

dfilt.dfasymfir |Direct-form antisymmetric |Supported Discrete FIR Filter

FIR

dfilt.fftfir Overlap-add FIR Not supported Overlap-Add FFT Filter
Requires DSP System
Toolbox

dfilt.latticeall |Lattice allpass Supported Not supported

pass

dfilt.latticear |Lattice autoregressive (AR) |Supported Allpole Filter
Requires DSP System
Toolbox

dfilt.latticearm |Lattice autoregressive Supported Not supported

a moving- average (ARMA)

dfilt.latticemam |Lattice moving-average Supported Not supported

ax (MA) for maximum phase

dfilt.latticemam |Lattice moving-average Supported Discrete FIR Filter

in (MA) for minimum phase

dfilt.statespace |State-space Supported. Not supported

dfilt.scalar Scalar gain object Supported Gain
Requires DSP System
Toolbox

dfilt.cascade Filters arranged in series |Supported Target blocks depend on
filter structures in the series

dfilt.parallel Filters arranged in parallel |Supported Target blocks depend on
filter structures in the
parallel system

For more information on each structure, use the syntax help dfilt.structure at the MATLAB
prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dfilt object without having to
specify the filter parameters again. You can apply these methods directly on the variable you assigned
to your dfilt object.
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For example, if you create a dfilt object, Hd, you can check whether it has linear phase with
islinphase(Hd), view its frequency response plot with fvtool(Hd), or obtain its frequency
response values with h=freqz (Hd). You can use all of the methods below in this way.

Note If your variable is a 1-D array of dfilt filters, the method is applied to each object in the array.
Only freqz, grpdelay, impz, is*, order, and stepz methods can be applied to arrays. The
zplane method can be applied to an array only if it is used without outputs.

Some of the methods listed below have the same name as Signal Processing Toolbox functions and
they behave similarly. This is called overloading of functions.

Available methods are:

Method

Description

addstage

Adds a stage to a cascade or parallel object, where a stage is a
separate, modular filter. See dfilt.cascade and dfilt.parallel.

block

block(Hd) creates a Simulink filter block of the dfilt object. The
target filter block depends on the filter structure. You must have
Simulink to use this method. Additionally, the DSP System Toolbox
may be required depending on the filter structure. See “Structures”
on page 1-291 for a mapping between the target blocks and filter
structures.

The block method can specify these properties/values:

'MapCoeffstoPorts' indicates whether to map the filter
coefficients to constant blocks connected to the generated block.
Default value is 'off'. Setting 'MapCoeffstoPorts' to 'on' turns
on the mapping and enables the 'CoeffNames' property, which
defines the constant block parameter names. 'CoeffNames' is a cell
array. Default values are {'Num'} for Direct form FIR filters, { 'K'}
for lattice filters, { 'Num', 'Den'} for IIR filters, and

{Num', 'Den', 'g'} for biquad filters. Variables, defined by
'CoeffNames', are created in the MATLAB workspace and have the
same data type as the filter's 'Arithmetic' property. Any existing
variable with the same name is overwritten. Note that you can use
either 'Link20bj "' or 'MapCoeffstoPorts', but not both
simultaneously.

'"InputProcessing’' specifies sample-based,
'elementsaschannels’, frame-based, 'columnsaschannels’,
processing, or 'inherited’. The default is frame-based processing.
If you do not have the DSP System Toolbox software, explicitly set the
'"InputProcessing' property to 'elementsaschannels’ to avoid
a runtime error. Setting ' InputProcessing' to 'inherited'
targets the Digital Filter block regardless of structure.

cascade

Returns the series combination of two dfilt objects. See
dfilt.cascade.
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Method

Description

coeffs

Returns the filter coefficients in a structure containing fields that use
the same property names as those in the original dfilt.

convert

Converts a dfilt object from one filter structure to another filter
structure.

fcfwrite

Writes a filter coefficient ASCII file. The file can contain a single filter
or a vector of objects. Default file name is untitled. fcf.

fcfwrite(Hd, filename) writes to a disk file named filename in
the current working directory. The . fcf extension is added
automatically.

fcfwrite(...,fmt) writes the coefficients in the format fmt,
where fmt can be one of the following:

"hex' for hexadecimal
'dec' for decimal

"bin' for binary representation.

fftcoeffs

Returns the frequency-domain coefficients used when filtering with a
dfilt.fftfir.

filter

Performs filtering using the dfilt object.

y = filter(Hd, x) filters x using the Hd filter and returns the
filtered data in y. See “Using Filter States” on page 1-298 for
information on using initial conditions. If x is a matrix, each column is
filtered as an independent channel. If x is a multidimensional array,
filter operates on the first nonsingleton dimension.

y = filter(Hd,x,dim) operates along the dimension dim. If x is a
vector or matrix and dim is 1, every column of X is a channel. If dim is
2, every row is a channel.

firtype

Returns the type (1-4) of a linear phase FIR filter.

freqz

Plots the frequency response in FVTool. Note that unlike the freqz
function, this dfilt freqz method has a default length of 8192.

grpdelay

Plots the group delay in FVTool.

impz

Plots the impulse response in FVTool.

impzlength

Returns the length of the impulse response.

info

Displays brief dfilt information, such as filter structure, length,
stability, linear phase, and, when appropriate, lattice and ladder
length. To display detailed information about the design method,
options, etc, use info(Hd, 'long'). The default display is
'short'. For multistage filters (cascade and parallel), use
info(Hd.Stage(x) ), where x is the stage number, to see
information about that stage.

isallpass

Returns a logical 1 (i.e., true) if the dfilt object in an allpass filter or
a logical 0 (i.e., false) if it is not.
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Method Description

iscascade Returns a logical 1 if the dfilt object is cascaded or a logical 0 if it
is not.

isfir Returns a logical 1 if the dfilt object has finite impulse response
(FIR) or a logical 0 if it does not.

islinphase Returns a logical 1 if the dfilt object is linear phase or a logical 0 if
it is not.

ismaxphase Returns a logical 1 if the dfilt object is maximum-phase or a logical
0 if it is not.

isminphase Returns a logical 1 if the dfilt object is minimum-phase or a logical
0 if it is not.

isparallel Returns a logical 1 if the dfilt object has parallel stages or a logical
0 if it does not.

isreal Returns a logical 1 if the dfilt object has real-valued coefficients or
a logical 0 if it does not.

isscalar Returns a logical 1 if the dfilt object is a scalar or a logical 0 if it is
not scalar.

issos Returns a logical 1 if the dfilt object has second-order sections or a
logical 0 if it does not.

isstable Returns a logical 1 if the dfilt object is stable or a logical 0 if it are
not.

nsections Returns the number of sections in a second-order sections filter. If a
multistage filter contains stages with multiple sections, using
nsections returns the total number of sections in all the stages (a
stage with a single section returns 1).

nstages Returns the number of stages of the filter, where a stage is a separate,
modular filter.

nstates Returns the number of states for an object.

order Returns the filter order. If Hd is a single-stage filter, the order is given
by the number of delays needed for a minimum realization of the
filter. If Hd has multiple stages, the order is given by the number of
delays needed for a minimum realization of the overall filter.

parallel Returns the parallel combination of two dfilt filters. See
dfilt.parallel.

phasez Plots the phase response in FVTool.
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Method

Description

realizemdl

(Available only with Simulink software.)

realizemdl (Hd) creates a Simulink model containing a subsystem
block realization of your dfilt.

realizemdl(Hd,pl,vl,p2,v2,...) creates the block using the
properties pl, p2,... and values v1, v2,.. specified.

The following properties are available:

'Blockname' specifies the name of the block. The default value is
'Filter'.

'Destination’' specifies whether to add the block to a current
Simulink model, create a new model, or place the block in an existing
subsystem in your model. Valid values are 'current’, 'new', or the
name of an existing subsystem in your model. Default value is
‘current’.

'OverwriteBlock' specifies whether to overwrite an existing block
that was created by realizemdl or create a new block. Valid values

are 'on' and 'off' and the defaultis 'off"'. Note that only blocks

created by realizemdl are overwritten.

The following properties optimize the block structure. Specifying
‘on' turns the optimization on and 'off' creates the block without
optimization. The default for each of the following is 'on"'.

'OptimizeZeros' removes zero-gain blocks.

'OptimizeOnes' replaces unity-gain blocks with a direct
connection.

'OptimizeNegOnes' replaces negative unity-gain blocks with a sign
change at the nearest summation block.

'OptimizeDelayChains' replaces cascaded chains of delay block
with a single integer delay block set to the appropriate delay.

removestage

Removes a stage from a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.

setstage

Overwrites a stage of a cascade or parallel dfilt. See
dfilt.cascade and dfilt.parallel.
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Method Description

S0s Converts the dfilt to a second-order sections dfilt. If Hd has a
single section, the returned filter has the same class.

sos(Hd, flag) specifies the ordering of the second-order sections. If
flag="'UP', the first row contains the poles closest to the origin, and
the last row contains the poles closest to the unit circle. If
flag="'down', the sections are ordered in the opposite direction. The
zeros are always paired with the poles closest to them.

sos(Hd, flag,scale) specifies the scaling of the gain and the
numerator coefficients of all second-order sections. scale can be
‘none’, 'inf' (infinity-norm) or 'two' (2-norm). Using infinity-
norm scaling with up ordering minimizes the probability of overflow
in the realization. Using 2-norm scaling with down ordering minimizes
the peak round-off noise.

SS Converts the dfilt to state-space. To see the separate A,B,C,D
matrices for the state-space model, use [A,B,C,D]=ss(Hd).

stepz Plots the step response in FVTool.
stepz(Hd, n) computes the first n samples of the step response.

stepz(Hd,n,Fs) separates the time samples by T = 1/Fs, where
Fs is assumed to be in Hz.

sysobj Converts the dfilt to a filter System object. See the reference page
for a list of supported objects. To use this method, you must have DSP
System Toolbox software installed.

tf Converts the dfilt to a transfer function.
zerophase Plots the zero-phase response in FVTool.
zpk Converts the dfilt to zeros-pole-gain form.
zplane Plots a pole-zero plot in FVTool.

For more information on each method, use the syntax help dfilt/method at the MATLAB prompt.

Viewing Properties

As with any object, you can use get to view a dfilt properties. To see a specific property, use
get(Hd, 'property")

To see all properties for an object, use

get(Hd)

Changing Properties

To set specific properties, use

set(Hd, 'propertyl',value, 'property2',value,...)

Note that you must use single quotation marks around the property name.
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Alternatively, you can get or set a property value with Object.property:

b =1[0.050.9 0.05];

Hd = dfilt.dffir(b);

% Lowpass direct-form I FIR filter
Hd.arithmetic % get arithmetic property

% returns double

Hd.arithmetic = 'single';

% Set arithmetic property to single precision

Copying an Object
To create a copy of an object, use the copy method.

H2 = copy(Hd)

Note Using the syntax H2 = Hd copies only the object handle and does not create a new object.

Converting Between Filter Structures

To change the filter structure of a dfilt object Hd, use

Hd2=convert(Hd, 'structure name');

where structure name is any valid structure name in single quotes. If Hd is a cascade or
parallel structure, each of its stages is converted to the new structure.

Using Filter States
Two properties control the filter states:

* states — stores the current states of the filter. Before the filter is applied, the states correspond
to the initial conditions and after the filter is applied, the states correspond to the final conditions.
For dfl, dflt, dflsos and dfltsos structures, states returns a filtstate object.

* PersistentMemory — controls whether filter states are saved. The default value is ' false',
which causes the initial conditions to be reset to zero before filtering and turns off the display of
states information. Setting PersistentMemory to 'true' allows the filter to use your initial
conditions or to reuse the final conditions of a previous filtering operation as the initial conditions
of the next filtering operation. It also displays information about the filter states.

Note If you set states and want to use them for filtering, you must set PersistentMemory to
"true' before you use the filter.

Examples

Create a direct-form I filter and use a method to see if it is stable.

[b,a] = butter(8,0.25);
Hd = dfilt.dfl(b,a)

If a dfilt's numerator values do not fit on a single line, a description of the vector is displayed. To
see the specific numerator values for this example, use



dfilt

get(Hd, 'numerator"')
or alternatively

Hd.numerator

Refer to the reference pages for each structure for more examples.

See Also

Apps
Filter Designer | Signal Analyzer

Functions
filter | freqz | grpdelay | impz | step | tf | zpk | zplane

Introduced before R2006a
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dfilt.cascade

Cascade of discrete-time filters

Syntax

Hd = dfilt.cascade(Hd1,Hd2,...)

Description

Hd = dfilt.cascade(Hd1l,Hd2, ...) returns a discrete-time filter, Hd, of type cascade, which is
a serial interconnection of two or more dfilt filters, Hd1, Hd2, etc. Each filter in a cascade is a
separate stage.

To add a filter (Hd1) to the end of an existing cascade (Hd), use

addstage(Hd,Hd1)

and to reorder the filters in a cascade, use the stage indices to indicate the desired ordering, such as.
Hd.stage = Hd.stage([1,3,2]);

You can also use the nondot notation format for calling a cascade:

cascade(Hd1l,Hd2,...)

r-—-- - - - - - - - - — il
x[zl_;.l. Hd1iz) | — melHd2(z) | 3= ... |_:...v[z;|
| |
L - - - - — - _— |
Hd
Examples

Cascade a lowpass filter and a highpass filter to produce a bandpass filter:
[bl,al]l=butter(8,0.6); % Lowpass

[b2,a2]=butter(8,0.4, "'high'); % Highpass
Hl=dfilt.df2t(bl,al);

H2=dfilt.df2t(b2,a2);
Hcas=dfilt.cascade(H1,H2) % Bandpass-passband .4-.6

To view details of the first stage, use

info(Hcas.Stage(1))

To view the states of a stage, use

Hcas.stage(1l).states

You can display states for individual stages only.
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See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.delay

Delay filter

Syntax

Hd
Hd

dfilt.delay
dfilt.delay(latency)

Description

Hd = dfilt.delay returns a discrete-time filter, Hd, of type delay, which adds a single delay to
any signal filtered with Hd. The filtered signal has its values shifted by one sample.

Hd = dfilt.delay(latency) returns a discrete-time filter, Hd, of type delay, which adds the
number of delay units specified in latency to any signal filtered with Hd. The filtered signal has its
values shifted by the latency number of samples. The values that appear before the shifted signal
are the filter states.

Examples

Create a delay filter with a latency of 4 and filter a simple signal to view the impact of applying a
delay.

h = dfilt.delay(4)
h:
FilterStructure: 'Delay’
Latency: 4
PersistentMemory: false
sig = 1:7 % Create some simple signal data
sig =
1 2 3 4 5 6 7
states = h.states % Filter states before filtering
states =
0
0
0
0
filter(h,sig) % Filter using the delay filter
ans =
0 0 0 0 1 2 3
states=h.states % Filter states after filtering
states =
4
5
6
7



dfilt.delay

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dfl

Discrete-time, direct-form I filter

Syntax

Hd
Hd

dfilt.dfl(b,a)
dfilt.dfl

Description

Hd = dfilt.dfl(b,a) returns a discrete-time, direct-form I filter, Hd, with numerator coefficients
b and denominator coefficients a. The filter states for this object are stored in a filtstates object.

Hd = dfilt.df1l returns a default, discrete-time, direct-form I filter, Hd, with b=1 and a=1. This
filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df1
(Direct-form 1)

Zb(1) za (1)

za (2)

=b (2}

za (n)

zb ()

Image of direct form one filter diagram

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The vector is
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zb(1)
zb(2)
zb(n)
za(1)
za(2)

za(n)

Examples

Create a direct-form I discrete-time filter with coefficients from a fourth-order lowpass Butterworth
design

[b,a] = butter(4,.5);
Hd = dfilt.dfl(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dflsos

Discrete-time, second-order section, direct-form I filter

Syntax

Hd = dfilt.dflsos(s)

Hd = dfilt.dflsos(bl,al,b2,a2,...)
Hd = dfilt.dflsos(...,Q)

Hd = dfilt.dflsos

Description

Hd = dfilt.dflsos(s) returns a discrete-time, second-order section, direct-form I filter; Hd, with
coefficients given in the s matrix. The filter states for this object are stored in a filtstates object.

Hd = dfilt.dflsos(bl,al,b2,a2,...) returns a discrete-time, second-order section, direct-
form I filter, Hd, with coefficients for the first section given in the b1 and al vectors, for the second
section given in the b2 and a2 vectors, etc.

Hd = dfilt.dflsos(...,qg) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.dflsos returns a default, discrete-time, second-order section, direct-form I filter, Hd.
This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.




dfilt.dflsos

df1sos
(Direct-form I, second-order sections)

o>

Input
ey ElO

k.
zb1(1)E

b12) aliz)

y
Y
21 fzatez
i) 1

z

b2 a1

from Section 1

--------

to Section 3

h drazen

b2(2) az(z)

h
: [ f=
zb2cz)| 31 G i

b203) az(z

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The vector is

zb1(1) zb2(1)
zb1(2) zb2(2)
zal(1) za2(1)
zal(2) za2(2)

For filters with more than one section, each section is a separate column in the matrix.

Examples

Specify a second-order sections, direct-form I discrete-time filter with coefficients from a sixth order,
lowpass, elliptical filter using the following code. The resulting filter has three sections.

[z,p,k] = ellip(6,1,60,.4);
[s,g] = zp2sos(z,p,k);
Hd = dfilt.dflsos(s,qg)

btain filter coefficients

% 0
% Convert to SOS
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See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dflt

Discrete-time, direct-form I transposed filter

Syntax

Hd = dfilt.dflt(b,a)
Hd = dfilt.dflt

Description

Hd = dfilt.dflt(b,a) returns a discrete-time, direct-form I transposed filter, Hd, with numerator
coefficients b and denominator coefficients a. The filter states for this object are stored in a
filtstates object.

Hd = dfilt.df1lt returns a default, discrete-time, direct-form I transposed filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df1t
(Transposed Direct-form |)

e« »{b(1) £
Y

1/al1)

za (1) -

= leben

alZ) e—  +—w hi2)

za (21 =z b2}

£

1
al3) —  L—w b3 J

To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The vector of states is:
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zb(1)
zb(2)

zb(M)
za(1)
za(2)

za(N)
Alternatively, you can access the states in the filtstates object:

= [0.05 0.9 0.05];
d = dfilt.dflt(b,1);
d.States

Returns

Numerator: [2x1 double]

Denominator: [0x1 double]
d.States.Numerator(l)=1; %Set zb(1l) equal to 1.

T XX TT

Examples

Create a direct-form I transposed discrete-time filter with coefficients from a fourth-order lowpass
Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.dflt(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dfltsos

Discrete-time, second-order section, direct-form I transposed filter

Syntax

Hd dfilt.dfltsos(s)

Hd = dfilt.dfltsos(bl,al,b2,a2,...)
Hd = dfilt.dfltsos(...,q)

Hd = dfilt.dfltsos

Description

Hd = dfilt.dfltsos(s) returns a discrete-time, second-order section, direct-form I, transposed
filter, Hd, with coefficients given in the s matrix. The filter states for this object are stored in a
filtstates object.

Hd = dfilt.dfltsos(bl,al,b2,a2,...) returns a discrete-time, second-order section, direct-
form I, transposed filter, Hd, with coefficients for the first section given in the b1 and al vectors, for
the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.dfltsos(...,qg) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.dfltsos returns a default, discrete-time, second-order section, direct-form I,
transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df1tsos
(Transposed Direct-form I, second-order sections)

oK =
bi(1,2)

Zb2(1)

a3 1) bz, 1) Elichy] biZ.2)
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To display the filter states, use this code to access the filtstates object.

Hs = Hd.states % Where Hd is the dfilt.dfl object and
double (Hs) % Hs is the filtstates object

The matrix is
zb1(1) zb2(1)
zb1(2) zb2(2)
zal(l) )
zal(2) )

Examples

Specify a second-order sections, direct-form I, transposed discrete-time filter with coefficients from a
sixth order, lowpass, elliptical filter using the following code:

[z,p,k] = ellip(6,1,60,.4);
[s,g] = zp2sos(z,p,k);
Hd = dfilt.dfltsos(s,qg)

Obtain filter coefficients
Convert to SOS

[
“
[

“

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.df2

Discrete-time, direct-form II filter

Syntax

Hd
Hd

dfilt.df2(b,a)
dfilt.df2

Description

Hd = dfilt.df2(b,a) returns a discrete-time, direct-form II filter, Hd, with numerator coefficients
b and denominator coefficients a.

Hd = dfilt.df2 returns a default, discrete-time, direct-form II filter, Hd, with b=1 and a=1. This
filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df2
(Direct-form Il)

The resulting filter states column vector is
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Examples

Create a direct-form II discrete-time filter with coefficients from a fourth-order lowpass Butterworth
design:

[b,a] = butter(4,.5);
Hd = dfilt.df2(b,a)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.df2sos

Discrete-time, second-order section, direct-form II filter

Syntax

Hd = dfilt.df2sos(s)

Hd = dfilt.df2sos(bl,al,b2,a2,...)
Hd = dfilt.df2sos(...,Q)

Hd = dfilt.df2sos

Description

Hd = dfilt.df2sos(s) returns a discrete-time, second-order section, direct-form II filter, Hd, with
coefficients given in the s matrix.

Hd = dfilt.df2sos(bl,al,b2,a2,...) returns a discrete-time, second-order section, direct-
form II object, Hd, with coefficients for the first section given in the b1 and al vectors, for the second
section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2sos(...,qg) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df2sos returns a default, discrete-time, second-order section, direct-form II filter, Hd.
This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.
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df2sos
(Direct-form Il, second-order sections)

-----

to Section 2

s o

from Section 2

-----

i to Section 3

The resulting filter states column vector is

z1(1) 22(1)
z1(2) 22(2)

For filters with more than one section, each section is a separate column in the vector.

Examples

Specify a second-order sections, direct-form II discrete-time filter with coefficients from a sixth order,
lowpass, elliptical filter using the following code:

[z,p,k] = ellip(6,1,60,.4); % Obtain filter coefficients
[s,g] = zp2sos(z,p,k); % Convert to SO0S
Hd = dfilt.df2sos(s,qg)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.df2t

Discrete-time, direct-form II transposed filter

Syntax

Hd
Hd

dfilt.df2t(b,a)
dfilt.df2t

Description

Hd = dfilt.df2t(b,a) returns a discrete-time, direct-form II transposed filter, Hd, with numerator
coefficients b and denominator coefficients a.

Hd = dfilt.df2t returns a default, discrete-time, direct-form II transposed filter, Hd, with b=1 and
a=1. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df2t
(Transposed Direct-form Il)

> w ® > D
x ¥
1/ai1)

= [

e

2>

@

9>

The filter states of dfilt.df2t object can be extracted as a column vector with:
b =[1 2];
a =[1 -0.9];

Hd = dfilt.df2t(b,a);
FiltStates = double(Hd.States);

The resulting filter states column vector is
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Examples

Create a direct-form II transposed discrete-time filter with coefficients from a 4-th order lowpass
Butterworth design:

[b,a] = butter(4,.5);
Hd = dfilt.df2t(b,a);

See Also
Signal Analyzer | designfilt

Introduced before R2006a

1-318



dfilt.df2tsos

dfilt.df2tsos

Discrete-time, second-order section, direct-form II transposed filter

Syntax

Hd = dfilt.df2tsos(s)

Hd = dfilt.df2tsos(bl,al,b2,a2,...)
Hd = dfilt.df2tsos(...,q)

Hd = dfilt.df2tsos

Description

Hd = dfilt.df2tsos(s) returns a discrete-time, second-order section, direct-form II, transposed
filter, Hd, with coefficients given in the s matrix.

Hd = dfilt.df2tsos(bl,al,b2,a2,...) returns a discrete-time, second-order section, direct-
form II, transposed filter, Hd, with coefficients for the first section given in the b1 and al vectors, for
the second section given in the b2 and a2 vectors, etc.

Hd = dfilt.df2tsos(...,qg) includes a gain vector g. The elements of g are the gains for each
section. The maximum length of g is the number of sections plus one. If g is not specified, all gains
default to one.

Hd = dfilt.df2tsos returns a default, discrete-time, second-order section, direct-form II,
transposed filter, Hd. This filter passes the input through to the output unchanged.

Note The leading coefficient of the denominator a(1) cannot be 0.

df2tsos
(Transposed Direct-form Il, second-order sections)

The resulting filter states column vector is
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z1(1) z2(1)
z1(2) 22(2)

Examples

Elliptic Filter as Second-Order Sections

Design a second-order sections, direct-form II, transposed discrete-time filter starting from a 6th-
order lowpass elliptic filter. Specify a passband edge frequency of 0.4m rad/sample, a passband ripple
of 1 dB, and a stopband attenuation of 60 dB. Visualize the filter response.

[z,p,k] = ellip(6,1,60,0.4); % Obtain filter coefficients

[s,g] = zp2sos(z,p,k); % C

onvert to SOS
Hd = dfilt.df2tsos(s,q);

fvtool(Hd)
Magnitude Response (dB)
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See Also

Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dfasymfir

Discrete-time, direct-form antisymmetric FIR filter

Syntax
Hd = dfilt.dfasymfir(b)
Hd = dfilt.dfasymfir

Description

Hd = dfilt.dfasymfir(b) returns a discrete-time, direct-form, antisymmetric FIR filter, Hd, with
numerator coefficients b.

Hd = dfilt.dfasymfir returns a default, discrete-time, direct-form, antisymmetric FIR filter, Hd,
with b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be antisymmetric.
In the figure below for an odd number of coefficients, b(3) =0, b(4) =-b(2) and b(5) =-b(1),
and in the next figure for an even number of coefficients, b(4) = -b(3), b(5) =-b(2), and

b(6) =-b(1).
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dfasymfir
(Antisymmetric FIR)
Even order
Odd number of coefficients, length(b) =7
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Note that antisymmetry is defined as
b{i) == -b{end -1 + 1)
so that the middle coefficient is zero for odd length
b{{end+1){2) = 0
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dfasymfir
(Antisymmetric FIR)
Even number of coefficients, length(b) = 6

= ()

8
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b{i) == -b{end -1 + 1)

The resulting filter states column vector for the odd number of coefficients example above is
1

(1)
(2)
(3)
(4)
(5)
(6)

NN N

4
5
6

NN

N

Examples

Odd-Order Antisymmetric FIR Filter Structure

Create a Type-4 25th-order highpass direct-form antisymmetric FIR filter structure for a dfilt
object.

Num coeffs = firpm(25,[0 .4 .5 1],[0 06 1 1],'h");
Hd = dfilt.dfasymfir(Num coeffs);

Display the impulse response of the filter.

impz(Hd)
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Impulse Response
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Even-Order Antisymmetric FIR Filter Structure

Create a 44th-order lowpass direct-form antisymmetric FIR differentiator filter structure fora dfilt
object.

Num_coeffs = firpm(44,[0 .3 .4 1],[0 .2 0 O], 'differentiator');
Hd = dfilt.dfasymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)
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Impulse Response
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See Also

Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dffir

Discrete-time, direct-form, FIR filter

Syntax

Hd
Hd

dfilt.dffir(b)
dfilt.dffir

Description

Hd = dfilt.dffir(b) returns a discrete-time, direct-form finite impulse response (FIR) filter, Hd,
with numerator coefficients, b.

Hd = dfilt.dffir returns a default, discrete-time, direct-form FIR filter, Hd, with b=1. This filter
passes the input through to the output unchanged.

dffir
(Direct-form FIR = Tapped delay line)
- s
o "

Output

The resulting filter states column vector is

2(1)
2(2))

Examples

Create a direct-form FIR discrete-time filter with coefficients from a 30 order lowpass equiripple
design:

b = firpm(30,[0 .1 .2 .5]*2,[1 1 0 0]);
Hd = dfilt.dffir(b)
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See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.dffirt

Discrete-time, direct-form FIR transposed filter

Syntax

Hd
Hd

dfilt.dffirt(b)
dfilt.dffirt

Description

Hd = dfilt.dffirt(b) returns a discrete-time, direct-form FIR transposed filter, Hd, with
numerator coefficients b.

Hd = dfilt.dffirt returns a default, discrete-time, direct-form FIR transposed filter, Hd, with
b=1. This filter passes the input through to the output unchanged.

dffirt
(Transposed Direct-form FIR)

PSP

z (1

¥

b2

1
h{3) J

¥

The resulting filter states column vector is

Examples

Create a direct-form FIR transposed discrete-time filter with coefficients from a 30 order lowpass
equiripple design:

b = firpm(30,[0 .1 .2 .51*¥2,[1 10 0]);
Hd = dfilt.dffirt(b)

See Also
Signal Analyzer | designfilt
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Introduced before R2006a
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dfilt.dfsymfir

Discrete-time, direct-form symmetric FIR filter

Syntax
Hd = dfilt.dfsymfir(b)
Hd = dfilt.dfsymfir

Description

Hd = dfilt.dfsymfir(b) returns a discrete-time, direct-form symmetric FIR filter, Hd, with
numerator coefficients b.

Hd = dfilt.dfsymfir returns a default, discrete-time, direct-form symmetric FIR filter, Hd, with
b=1. This filter passes the input through to the output unchanged.

Note Only the first half of vector b is used because the second half is assumed to be symmetric. In
the figure below for an odd number of coefficients, b(3) =0, b(4) =b(2) and b(5) =b(1), and in
the next figure for an even number of coefficients, b(4) = b(3), b(5) =b(2),and b(6) =b(1).

dfsymfir
(Symmetric FIR)
Even order
Odd number of coefficients, length(b) = 5
b(i)==b(end -i+ 1)
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dfsymfir
(Symmetric FIR)
Odd order
Even number of coefficients, length(b) = 6
b(i) == b(end -i +1)
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The resulting filter states column vector for the odd number of coefficients example above is

Examples

Odd-Order Symmetric FIR Filter Structure

Create a Type-2 15th-order direct-form symmetric FIR filter structure for a dfilt object.

Num_ coeffs = firl(15,0.5);
Hd = dfilt.dfsymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)
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Impulse Response
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Even-Order Symmetric FIR Filter Structure

Create a Type-1 16th-order direct-form symmetric FIR filter structure for a dfilt object.

Num_coeffs = firl(16,0.5);
Hd = dfilt.dfsymfir(Num_coeffs);

Display the impulse response of the filter.

impz(Hd)
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See Also
Signal Analyzer | designfilt

Introduced before R2006a
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1-334

dfilt.fftfir

Discrete-time, overlap-add, FIR filter

Syntax

Hd
Hd
Hd

dfilt.fftfir(b, len)
dfilt.fftfir(b)
dfilt.fftfir

Description

This object uses the overlap-add method of block FIR filtering, which is very efficient for streaming
data.

Hd = dfilt.fftfir(b, len) returns a discrete-time, FFT, FIR filter, Hd, with numerator
coefficients, b and block length, lLen. The block length is the number of input points to use for each
overlap-add computation.

Hd = dfilt.fftfir(b) returns a discrete-time, FFT, FIR filter, Hd, with numerator coefficients, b
and block length, 1en=100.

Hd = dfilt.fftfir returns a default, discrete-time, FFT, FIR filter, Hd, with the numerator b=1
and block length, 1en=100. This filter passes the input through to the output unchanged.

Note When you use a dfilt. fftfir object to filter data, the filter always operates on a segment of
the signal equal in length to an integer multiple of the object's block length, Len. If the input signal
length is not equal to an integer multiple of the block length, the signal length is truncated to the
nearest integer satisfying this requirement. If the PersistentMemory property is set to true, the
next time you use the filter object the remaining signal samples are prepended to the subsequent
input. The resulting number of FFT points = (filter length + the block length - 1). The filter is most
efficient if the number of FFT points is a power of 2.

The fftfir uses an overlap-add block processing algorithm, which is represented as follows,



dfilt.fftfir

I I |
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where len is the block length and M is the length of the numerator-1, (Length(b) - 1), which is also
the number of states. The output of each convolution is a block that is longer than the input block by
a tail of (Length(b) - 1) samples. These tails overlap the next block and are added to it. The states
reported by dfilt. fftfir are the tails of the final convolution.

Examples

Create an FFT FIR discrete-time filter with coefficients from a 30! order lowpass equiripple design:

b = firpm(30,[0 .1 .2 .5]1*2,[1 1 0 0]);
Hd = dfilt.fftfir(b)

To view the frequency domain coefficients used in the filtering, use the following command.

freq _coeffs = fftcoeffs(Hd);

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.latticeallpass

Discrete-time, lattice allpass filter

Syntax

Hd
Hd

dfilt.latticeallpass (k)
dfilt.latticeallpass

Description

Hd = dfilt.latticeallpass (k) returns a discrete-time, lattice allpass filter, Hd, with lattice
coefficients, k.

Hd = dfilt.latticeallpass returns a default, discrete-time, lattice allpass filter, Hd, with k=[ ].
This filter passes the input through to the output unchanged.

latticeallpass
(Lattice Allpass)

ki(2) k(1)

conj(k(2) conj(k(1yd

Output

1
z
) z(h

I

z

The resulting filter states column vector Hd.States is

Examples

Form a third-order lattice allpass filter structure for a dfilt object, Hd, using the following lattice
coefficients:

k =11.66 .7 .44];
Hd = dfilt.latticeallpass(k)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.latticear

Discrete-time, lattice, autoregressive filter

Syntax

Hd
Hd

dfilt.latticear(k)
dfilt.latticear

Description

Hd = dfilt.latticear (k) returns a discrete-time, lattice autoregressive filter, Hd, with lattice
coefficients, k.

Hd = dfilt.latticear returns a default, discrete-time, lattice autoregressive filter, Hd, with k=[ ].
This filter passes the input through to the output unchanged.

latticear
(Autoregressive Lattice)

Lt

o o

¥
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The resulting filter states column vector is

Examples

Form a third-order lattice autoregressive filter structure for a dfilt object, Hd, using the following
lattice coefficients:

k =1.66 .7 .44];
Hd = dfilt.latticear(k)

See Also
Signal Analyzer | designfilt
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Introduced before R2006a
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dfilt.latticearma

Discrete-time, lattice, autoregressive, moving-average filter

Syntax

Hd
Hd

dfilt.latticearma(k,v)
dfilt.latticearma

Description

Hd = dfilt.latticearma(k,v) returns a discrete-time, lattice autoregressive, moving-average
filter, Hd, with lattice coefficients, k and ladder coefficients v.

Hd = dfilt.latticearma returns a default, discrete-time, lattice autoregressive, moving-average
filter, Hd, with k=[ ] and v=1. This filter passes the input through to the output unchanged.

latticearma
(Autogressive Moving-Average Lattice)

Examples

Form a third-order lattice autoregressive, moving-average filter structure for a dfilt object, Hd,
using the following lattice coefficients:

k =1.66 .7 .44];
Hd = dfilt.latticearma(k)

See Also
Signal Analyzer | designfilt
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dfilt.latticemamax

Discrete-time, lattice, moving-average filter

Syntax

Hd
Hd

dfilt.latticemamax (k)
dfilt.latticemamax

Description

Hd = dfilt.latticemamax (k) returns a discrete-time, lattice, moving-average filter, Hd, with
lattice coefficients k.

Note If the k coefficients define a maximum phase filter, the resulting filter in this structure is
maximum phase. If your coefficients do not define a maximum phase filter, placing them in this
structure does not produce a maximum phase filter.

Hd = dfilt.latticemamax returns a default discrete-time, lattice, moving-average filter, Hd, with
k=[ ]. This filter passes the input through to the output unchanged.

latticemamax
(Moving-Average, Maximum Phase Lattice)

W i
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=il ziZ)

Examples

Form a fourth-order lattice, moving-average, maximum phase filter structure for a dfilt object, Hd,
using the following lattice coefficients:
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k =1.66 .7 .44 .331;
Hd = dfilt.latticemamax (k)

Introduced before R2006a
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dfilt.latticemamin

Discrete-time, lattice, moving-average filter

Syntax

Hd
Hd

dfilt.latticemamin(k)
dfilt.latticemamin

Description

Hd = dfilt.latticemamin (k) returns a discrete-time, lattice, moving-average, minimum phase,
filter, Hd, with lattice coefficients k.

Note If the k coefficients define a minimum phase filter, the resulting filter in this structure is
minimum phase. If your coefficients do not define a minimum phase filter, placing them in this
structure does not produce a minimum phase filter.

Hd = dfilt.latticemamin returns a default discrete-time, lattice, moving-average, minimum
phase, filter, Hd, with k=[ ]. This filter passes the input through to the output unchanged.

latticemamin
(Moving-Average, Minimum Phase Lattice)
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Examples

Form a third-order lattice, moving-average, minimum phase, filter structure for a dfilt object, Hd,
using the following lattice coefficients.
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k =1.66 .7 .44];
Hd = dfilt.latticemamin (k)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.parallel

Discrete-time, parallel structure filter

Syntax

Hd = dfilt.parallel(Hd1,Hd2,...)

Description

Hd = dfilt.parallel(Hd1,Hd2,...) returns a discrete-time filter, Hd, which is a structure of
two or more dfilt filters, Hd1, Hd2, etc. arranged in parallel. Each filter in a parallel structure is a
separate stage. You can display states for individual stages only. To view the states of a stage use

Hd.stage(1).states

To append a filter (Hd1) onto an existing parallel filter (Hd), use
addstage(Hd,Hdl)

You can also use the nondot notation format for calling a parallel structure.

parallel(Hd1l,Hd2,...)

gLl HaT(z))
I I
X(z) L |
| Y
—:-T-HdEHI.‘J.‘J (Y (2)
| A
. |
| l_
L — — — 1
Hd
Examples

Using a parallel structure, create a coupled-allpass decomposition of a 7th order lowpass digital,
elliptic filter with a normalized cutoff frequency of 0.5, 1 decibel of peak-to-peak ripple and a
minimum stopband attenuation of 40 decibels.

kl = [-0.0154 0.9846 -0.3048 0.56011;
Hd1l = dfilt.latticeallpass(kl);

k2 = [-0.1294 0.8341 -0.4165];

Hd2 = dfilt.latticeallpass(k2);

Hpar = parallel(Hdl ,Hd2);
gain = dfilt.scalar(0.5); % Normalize passband gain
Hcas = cascade(gain,Hpar);

For details on the stages of this filter, use
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info(Hcas.Stage(1))
and

info(Hcas.Stage(2))
To view this filter, use

fvtool (Hcas)

) Figure 1: Filter Yisualization Tool - Magnitude R - |D|ﬂ
File Edit Analysis Insert Yiew window Help L

DER|OTNNND 220K | EE
RIE B # & [T — BB b @ R

Magnitude Response (dB)

D T

T r T T T T

o

=z

[ik)

=

=

[y

=]

[

=

PP I T TS SRR SR S AN SN SR
1] 04 0.2 0.3 0.4 045 0.6 0.7 05 0.4

Mormalized Frequency (=7 radisample)
See Also

Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.scalar

Discrete-time, scalar filter

Syntax

Hd = dfilt.scalar(qg)
Hd = dfilt.scalar

Description

Hd = dfilt.scalar(g) returns a discrete-time, scalar filter, Hd, with gain g, where g is a scalar.

Hd

Examples

Create a direct-form I filter and a scalar object with a gain of 3 and cascade them together.

b [0.3 0.6 0.3];

a [100.2];

Hd filt = dfilt.dfl(b,a);

Hd gain = dfilt.scalar(3);

Hd cascade = cascade(Hd gain,Hd filt);

hfvt = fvtool(Hd filt,Hd gain,Hd cascade);

legend(hfvt, 'Original Filter', 'Gain', 'Cascaded Filter',...
'location’', 'southwest');

) Filter Yisualization Tool - Figure 2: Magnitude Response {dB)}
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To view the stages of the cascaded filter, use

dfilt.scalar returns a default, discrete-time scalar gain filter, Hd, with gain 1.
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Hd.stage(1)
and

Hd.stage(2)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dfilt.statespace

Discrete-time, state-space filter

Syntax

Hd
Hd

dfilt.statespace(A,B,C,D)
dfilt.statespace

Description

Hd = dfilt.statespace(A,B,C,D) returns a discrete-time state-space filter, Hd, with rectangular
arrays A, B, C, and D.

A, B, C, and D are from the matrix or state-space form of a filter's difference equations

x(n + 1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

where x(n) is the vector states at time n, u(n) is the input at time n, y is the output at time n, A is the
state-transition matrix, B is the input-to-state transmission matrix, C is the state-to-output
transmission matrix, and D is the input-to-output transmission matrix. For single-channel systems, A is
an m-by-m matrix where m is the order of the filter, B is a column vector, C is a row vector, and D is a
scalar.

d = dfilt.statespace returns a default, discrete-time state-space filter, Hd, with A=[ ], B=[ ],

H
C=[ ], and D=1. This filter passes the input through to the output unchanged.

Statespace

¥
=
¥

Outt

y] —p++

B
o

Input

The resulting filter states column vector has the same number of rows as the number of rows of A or
B.

Examples

Create a second-order, state-space filter structure from a second-order, lowpass Butterworth design.
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A,B,C,D] = butter(2,0.5);
d =

[
H dfilt.statespace(A,B,C,D)

See Also
Signal Analyzer | designfilt

Introduced before R2006a
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dftmtx

Discrete Fourier transform matrix

Syntax

a = dftmtx(n)

Description

a = dftmtx(n) returns an n-by-n complex discrete Fourier transform matrix.

Examples

The FFT and the DFT Matrix

In practice, it is more efficient to compute the discrete Fourier transform with the FFT than with the
DFT matrix. The FFT also uses less memory. The two procedures give the same result.

x = 1:256;
yl = fft(x);

n = length(x);
y2 = x*dftmtx(n);

norm(yl-y2)

ans = 8.0174e-12

Input Arguments

n — Discrete Fourier transform length
positive integer

Discrete Fourier transform length, specified as an integer.
Data Types: single | double
Output Arguments

a — Discrete Fourier transform matrix
matrix

Discrete Fourier transform matrix, returned as a matrix.
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More About

Discrete Fourier Transform Matrix

A discrete Fourier transform matrix is a complex matrix whose matrix product with a vector
computes the discrete Fourier transform of the vector. dftmtx takes the FFT of the identity matrix to
generate the transform matrix.

For a column vector X,
y = dftmtx(n)*x
isthe same asy = fft(x,n). The inverse discrete Fourier transform matrix is

ainv = conj(dftmtx(n))/n

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
convmtx | fft

Introduced before R2006a
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digitalFilter

Digital filter

Description

Use designfilt to design and edit digitalFilter objects.

Use designfiltinthe formd = designfilt(resp,Name,Value) to design a digital filter, d,
with response type resp. Customize the filter further using Name, Value pairs.

Use designfilt in the form designfilt(d) to edit an existing filter, d.

Note This is the only way to edit an existing digitalFilter object. Its properties are otherwise
read-only.

Use filter in the form dataOut = filter(d,dataIn) to filter a signal with a
digitalFilter d. The input can be a double- or single-precision vector. It can also be a matrix
with as many columns as there are input channels.

Use FVTool to visualize a digitalFilter.
These functions take digitalFilter objects as input.

Object Functions

Filtering

Function Description

fftfilt Filters a signal with a digitalFilter using an FFT-based overlap-add
method

filter Filters a signal using a digitalFilter

filtfilt Performs zero-phase filtering of a signal with a digitalFilter
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Filter Analysis

Function Description

double Casts the coefficients of a digitalFilter to double precision

filt2block Generates a Simulink filter block corresponding to a digitalFilter

filtord Returns the filter order of a digitalFilter

firtype Returns the type (1, 2, 3, or 4) of an FIR digitalFilter

freqz Returns or plots the frequency response of a digitalFilter

FVTool Opens the Filter Visualization Tool and displays the magnitude response
ofadigitalFilter

grpdelay Returns or plots the group delay response of a digitalFilter

impz Returns or plots the impulse response of a digitalFilter

impzlength Returns the length of the impulse response of a digitalFilter,
whether actual (for FIR filters) or effective (for IIR filters)

info Returns a character array with information about a digitalFilter

isallpass Returns true if a digitalFilter is allpass

isdouble Returns true if the coefficients of a digitalFilter are double
precision

isfir Returns true if a digitalFilter has a finite impulse response

islinphase Returns true if a digitalFilter has linear phase

ismaxphase Returns true if a digitalFilter is maximum phase

isminphase Returns true if a digitalFilter is minimum phase

issingle Returns true if the coefficients of a digitalFilter are single
precision

isstable Returns true if a digitalFilter is stable

phasedelay Returns or plots the phase delay response of a digitalFilter

phasez Returns or plots the (unwrapped) phase response of a digitalFilter

single Casts the coefficients of a digitalFilter to single precision

Ss Returns the state-space representation of a digitalFilter

stepz Returns or plots the step response of a digitalFilter

tf Returns the transfer function representation of a digitalFilter

zerophase Returns or plots the zero-phase response of a digitalFilter

zpk Returns the zero-pole-gain representation of a digitalFilter

zplane Displays the poles and zeros of the transfer function represented by a

digitalFilter

Examples




digitalFilter

Lowpass lIR Filter

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB.

Specify a sample rate of 200 kHz. Visualize the magnitude response of the filter.

1pFilt = designfilt('lowpassiir','FilterOrder"',8, .
'PassbandFrequency',35e3, 'PassbandRipple',0.2,
'SampleRate',200e3);
fvtool(lpFilt)

Magnitude (dB)
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Use the filter you designed to filter a 1000-sample random signal.

dataln = randn(1000,1);

dataOut = filter(lpFilt,dataln);

Output the filter coefficients, expressed as second-order sections.

S0sS

S0S

[cNoNoNO]

1pFilt.Coefficients

4%x6

.2666
.1943
.1012
.0318

0.5333
0.3886
0.2023
0.0636

0.2666
0.1943
0.1012
0.0318

1.0000
1.0000
1.0000
1.0000

-0.8346
-0.9586
-1.1912
-1.3810

0.9073
0.7403
0.5983
0.5090
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See Also

FVTool | designfilt | double | fftfilt | filt2block | filter | filtfilt | filtord |
firtype| freqz | grpdelay | impz | impzlength | info | isallpass | isdouble | isfir |
islinphase | ismaxphase | isminphase | issingle | isstable | phasedelay | phasez |
single|ss|stepz | tf | zerophase | zpk | zplane

Introduced in R2014a
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digitrevorder

Permute input into digit-reversed order

Syntax

y = digitrevorder(x,r)
[y,i] = digitrevorder(x,r)

Description

digitrevorder is useful for pre-ordering a vector of filter coefficients for use in frequency-domain
filtering algorithms, in which the fft and ifft transforms are computed without digit-reversed
ordering for improved run-time efficiency.

y = digitrevorder(x, r) returns the input data in digit-reversed order in vector or matrix y. The
digit-reversal is computed using the number system base (radix base) r, which can be any integer
from 2 to 36. The length of x must be an integer power of r. If x is a matrix, the digit reversal occurs
on the first dimension of x with size greater than 1. y is the same size as x.

[y,i] = digitrevorder(x, r) returns the digit-reversed vector or matrix y and the digit-reversed
indices i, such thaty = x(1i). Recall that MATLAB matrices use 1-based indexing, so the first index
of y will be 1, not 0.

The following table shows the numbers 0 through 15, the corresponding digits and the digit-reversed
numbers using radix base-4. The corresponding radix base-2 bits and bit-reversed indices are also

shown.

Linear Base-4 Digit- Digit- Base-2 Bits |Base-2 Reversed |Bit- Reversed

Index Digits Reversed Reversed (bitrevorder) Index
Index

0 00 00 0 0000 0000 0

1 01 10 4 0001 1000 8

2 02 20 8 0010 0100 4

3 03 30 12 0011 1100 12

4 10 01 1 0100 0010 2

5 11 11 5 0101 1010 10

6 12 21 9 0110 0110 6

7 13 31 13 0111 1110 14

8 20 02 1000 0001

9 21 12 1001 1001

10 22 22 10 1010 0101

11 23 32 14 1011 1101 13

12 30 03 3 1100 0011 3
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Linear Base-4 Digit- Digit- Base-2 Bits |Base-2 Reversed |Bit- Reversed
Index Digits Reversed Reversed (bitrevorder) Index
Index
13 31 13 7 1101 1011 11
14 32 23 11 1110 0111 7
15 33 33 15 1111 1111 15
Examples

1-358

Base-3 Digit-Reversed Order

Obtain the digit-reversed, radix base-3 ordered output of a vector containing 9 values. Obtain the
same result by converting to base 3 and reversing the digits.

X = (0:8)';

y

cl
c2
c3

digitrevorder(x,3);

dec2base(x,3);
fliplr(cl);
base2dec(c2,3);

T = table(x,y,cl,c2,c3)

T=9x5 table
X y

oNOOULA, WNEFEO
OCUUNNP,PROWO

See Also

cl c2
00 00
01 10
02 20
10 01
11 11
12 21
20 02
21 12
22 22

bitrevorder | fft|ifft

Introduced before R2006a
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diric
Dirichlet or periodic sinc function

Syntax

y = diric(x,n)

Description

y = diric(x,n) returns the “Dirichlet Function” on page 1-363 of degree n evaluated at the
elements of the input array x.

Examples

Dirichlet Function

Compute and plot the Dirichlet function between —2m and 2m for N = 7 and N = 8. The function has a
period of 2m for odd N and 41 for even N.

x = linspace(-2*pi,2*pi,301);

d7
d8

diric(x,7);
diric(x,8);

subplot(2,1,1)
plot(x/pi,d7)

ylabel('N = 7")
title('Dirichlet Function')

subplot(2,1,2)
plot(x/pi,d8)
ylabel('N = 8')
xlabel('x / \pi')
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Dirichlet Function
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Periodic and Aperiodic Sinc Functions
The Dirichlet and sinc functions are related by Dy(mx) = sinc(Nx/2)/sinc(x/2). Show this relationship
for N = 6. Avoid indeterminate expressions by specifying that the ratio of sinc functions is (- 1)k(N -b

for x = 2k, where k is an integer.

xmax = 4;
x = linspace(-xmax,xmax,1001)";

N =6;
yd = diric(x*pi,N);
ys = sinc(N*x/2)./sinc(x/2);
ys(~mod(x,2)) = (-1).7~(x(~mod(x,2))/2*(N-1));
subplot(2,1,1)
plot(x,yd)
title('D 6(x*pi)")
subplot(2,1,2)

plot(x,ys)
title('sinc(6*x/2) / sinc(x/2)")
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D (x*pi)
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Repeat the calculation for N = 13.

N = 13;
yd = diric(x*pi,N);

ys = sinc(N*x/2)./sinc(x/2);

ys(~mod(x,2)) = (-1)."~(x(~mod(x,2))/2*(N-1));

subplot(2,1,1)

plot(x,yd)
title('D {13} (x*pi)")

subplot(2,1,2)
plot(x,ys)
title('sinc(13*x/2) / sinc(x/2)")
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Input Arguments

X — Input array
real scalar | real vector | real matrix | real N-D array

Input array, specified as a real scalar, vector, matrix, or N-D array. When x is nonscalar, diric is an
element-wise operation.

Data Types: double | single

n — Function degree
positive integer scalar

Function degree, specified as a positive integer scalar.
Data Types: double | single
Output Arguments

y — Output array
real scalar | real vector | real matrix | real N-D array

Output array, returned as a real-valued scalar, vector, matrix, or N-D array of the same size as X.
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More About

Dirichlet Function

The Dirichlet function, or periodic sinc function, is

sin(Nx/2)
DN(X) = Nsin(x/2)

(-1N=Dx=onk, k=0, =1, £2, +3,...

xz2nk, k=01, £2, £3,...

for any nonzero integer N.

This function has period 2m for odd N and period 4m for even N. Its maximum value is 1 for all N, and
its minimum value is -1 for even N. The magnitude of the function is 1/N times the magnitude of the
discrete-time Fourier transform of the N-point rectangular window.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cos | gauspuls | pulstran | rectpuls | sawtooth | sin| sinc | square | tripuls

Introduced before R2006a
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double

Cast coefficients of digital filter to double precision

Syntax

f2 = double(fl)

Description

f2 = double(f1l) casts coefficients in a digital filter, f1, to double precision and returns a new
digital filter, 2, that contains these coefficients.

Examples

Lowpass FIR Filter in Single and Double Precision

Use designfilt to design a Sth-order FIR lowpass filter. Specify a normalized passband frequency
of 0.2m rad/sample and a normalized stopband frequency of 0.55m rad/sample.

Cast the filter to single precision and cast it back to double precision. Display the first coefficient of
each filter.

format long

d = designfilt('lowpassfir', 'FilterOrder',5, ...
'PassbandFrequency',0.2, 'StopbandFrequency', 0.55);

e

f

single(d);
double(e);

coed = d.Coefficients(1)

coed =
0.003947882145754

coee e.Coefficients(1)

coee = single
0.0039479
coef = f.Coefficients(1)

coef =
0.003947881981730

Use doub'le to analyze, in double precision, the effects of single-precision quantization of filter
coefficients.



double

Input Arguments

f1 — Single-precision digital filter
digitalFilter object

Single-precision digital filter, specified as a digitalFilter object. Use designfilt to generate a
digital filter based on frequency-response specifications and single to cast it to single precision.

Example: fl=
single(designfilt('lowpassfir', 'FilterOrder',3, 'HalfPowerFrequency',0.5))
specifies a third-order Butterworth filter with normalized 3-dB frequency 0.51 rad/sample cast in
single precision.

Output Arguments

f2 — Double-precision digital filter
digitalFilter object

Double-precision digital filter, returned as a digitalFilter object.

See Also
designfilt |digitalFilter | isdouble | issingle|single

Introduced in R2014a
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downsample

Decrease sample rate by integer factor

Syntax

downsample(x,n)
downsample(x,n,phase)

y
y

Description

y = downsample(x,n) decreases the sample rate of x by keeping the first sample and then every
nth sample after the first. If x is a matrix, the function treats each column as a separate sequence.

y = downsample(x,n,phase) specifies the number of samples by which to offset the downsampled
sequence.

Examples

Decrease Sample Rates

Decrease the sample rate of a sequence by a factor of 3.

x=1[12345678910];
y = downsample(x,3)
y = 1)(4

Decrease the sample rate of the sequence by a factor of 3 and add a phase offset of 2.

downsample(x,3,2)

<
1]

y = 1x3

3 6 9

Decrease the sample rate of a matrix by a factor of 3.

x=1[1 2 3;

4 5 6;

7 8 9;

10 11 12];
y = downsample(x,3)
y = 2x3

1 2 3
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Input Arguments

X — Input array
vector | matrix

Input array, specified as a vector or matrix. If x is a matrix, the function treats the columns as
independent channels.

Example: cos(pi/4*(0:159)) + randn(1l,160) specifies a sinusoid embedded in white Gaussian
noise.

Example: cos(pi./[4;2]*(0:159))' + randn(160,2) specifies a two-channel noisy sinusoid.

n — Downsampling factor
positive integer

Downsampling factor, specified as a positive integer.

Data Types: single | double

phase — Offset
0 (default) | positive integer

Offset, specified as a positive integer from O ton - 1.
Data Types: single | double
Output Arguments

y — Downsampled array
vector | matrix

Downsampled array, returned as a vector or matrix.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
decimate | interp | interpl | resample | spline | upfirdn | upsample

Introduced before R2006a
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dpss

Discrete prolate spheroidal (Slepian) sequences

Syntax

dps seq = dpss(seq length,time halfbandwidth)
[dps seq, lambdal] = dpss(seq length,time halfbandwidth)
[. dpss(seq length,time halfbandwidth,num seq)

T =
[...]1 = dpss(seq length time halfbandwidth, 'interp method')
[...] = dpss(...,Ni)
[...] = dpss(. 'trace )
Description

dps seq = dpss(seq _length,time halfbandwidth) returns the first

round(2*time halfbandwidth) discrete prolate spheroidal (DPSS), or Slepian sequences of
length seq_length. dps_ seq is a matrix with seq_length rows and
round(2*time_halfbandwidth) columns. time halfbandwidth must be strictly less than
seq length/2.

[dps_seq, lambda] = dpss(seq length,time halfbandwidth) returns the frequency-domain
energy concentration ratios of the column vectors in dps_seq. The ratios represent the amount of
energy in the passband [-W,W] to the total energy from [-F,/2,F /2], where F; is the sample rate.
lambda is a column vector equal in length to the number of Slepian sequences.

[...] = dpss(seq _length,time halfbandwidth,num seq) returns the first num_seq Slepian
sequences with time half bandwidth product time halfbandwidth ordered by their energy
concentration ratios. If num_seq is a two-element vector, the returned Slepian sequences range from
num_seq(1) to num_seq(2).

[...] = dpss(seq length,time halfbandwidth, 'interp method') uses interpolation to
compute the DPSSs from a user-created database of DPSSs. Create the database of DPSSs with
dpsssave and ensure that the resulting file, dpss.mat, is in the MATLAB search path. Valid options
for 'interp method' are 'spline' and 'linear'. The interpolation method uses the Slepian
sequences in the database with time half bandwidth product time halfbandwidth and length
closest to seq_length.

[...]

[...] dpss(..., 'trace') prints the method used to compute the DPSSs in the command
window. Possible methods include: direct, spline interpolation, and linear interpolation.

dpss(...,Ni) interpolates from DPSSs of length Ni in the database dpss.mat.

Examples

Generate a Set of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a time half
bandwidth product of 2.5. Plot the sequences and find the concentration ratios.



dpss

seq_length = 512;

time halfbandwidth = 2.5;

num_seq = 2*(2.5)-1;

[dps_seq,lambda] = dpss(seq length,time halfbandwidth,num seq);

plot(dps_seq)

title('Slepian Sequences, N = 512, NW = 2.5")
axis([0 512 -0.15 0.15])
legend('1lst','2nd"','3rd"', '4th")

Slepian Sequences, N=512, NW =25

1st
2nd

0r 3rd |
4th

0.05

-0.05

0 50 100 150 200 250 300 350 400 450 500

concentration ratios = lambda'’
concentration ratios = 1Ix4

1.0000 0.9998 0.9962 0.9521

More About

Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-frequency
concentration problem. For all finite-energy sequences x[n] index limited to some set [N1, N1 + Ny],

which sequence maximizes the following ratio:
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where F; is the sample rate and |W| < Fs/2. Accordingly, this ratio determines which index-limited
sequence has the largest proportion of its energy in the band [-W,W]. For index-limited sequences,
the ratio must satisfy the inequality 0 < A < 1. The sequence maximizing the ratio is the first discrete
prolate spheroidal or Slepian sequence. The second Slepian sequence maximizes the ratio and is
orthogonal to the first Slepian sequence. The third Slepian sequence maximizes the ratio of integrals
and is orthogonal to both the first and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [-W,W] is the
effective bandwidth of the sequence. In constructing Slepian sequences, you choose the desired
sequence length and bandwidth 2W. Both the sequence length and bandwidth affect how many
Slepian sequences have concentration ratios near one. As a rule, there are 2NW - 1 Slepian
sequences with energy concentration ratios approximately equal to one. Beyond 2NW - 1 Slepian
sequences, the concentration ratios begin to approach zero. Common choices for the time half
bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half bandwidth
product as NW/F,, where F is the sample rate.

References

Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications. Cambridge, UK:
Cambridge University Press, 1993.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

All inputs must be constants. Expressions or variables are allowed if their values do not change.

See Also
dpssclear | dpssload | dpsssave | pmtm

Topics
“Nonparametric Methods”

Introduced before R2006a
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dpssclear

Remove discrete prolate spheroidal sequences from database

Syntax

dpssclear(n,nw)

Description

dpssclear(n,nw) removes sequences with length n and time-bandwidth product nw from the DPSS
MAT-file database dpss.mat.

See Also
dpss | dpssdir | dpssload | dpsssave

Introduced before R2006a
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dpssdir

Discrete prolate spheroidal sequences database directory

Syntax

dpssdir
dpssdir(n)
dpssdir(nw, 'nw')
dpssdir(n,nw)
index = dpssdir
Description

dpssdir manages the database directory that contains the generated DPSS samples in the DPSS
MAT-file database dpss.mat. Create the DPSS MAT-file database with dpsssave.

dpssdir lists the directory of saved sequences in dpss.mat.

dpssdir(n) lists the sequences saved with length n.

dpssdir(nw, 'nw') lists the sequences saved with time-bandwidth product nw.
dpssdir(n,nw) lists the sequences saved with length n and time-bandwidth product nw.

index = dpssdir is a structure array describing the DPSS database. Pass n and nw options as for
the no output case to get a filtered index.

See Also
dpss | dpssclear | dpssload | dpsssave

Introduced before R2006a
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dpssload

Load discrete prolate spheroidal sequences from database

Syntax

[e,v] = dpssload(n,nw)

Description

[e,v] = dpssload(n,nw) loads all sequences with length n and time-bandwidth product nw in the
columns of e and their corresponding concentrations in vector v from the DPSS MAT-file database
dpss.mat. Create the dpss.mat file using dpssave.

See Also
dpss | dpssclear | dpssdir | dpsssave

Introduced before R2006a
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dpsssave

Discrete prolate spheroidal or Slepian sequence database

Syntax

dpsssave(time halfbandwith,dps seq, lambda)
status = dpsssave(time halfbandwith,dps seq, lambda)

Description

dpsssave(time halfbandwith,dps seq, lambda) creates a database of discrete prolate
spheroidal (DPSS) or Slepian sequences and saves the results in dpss.mat. The time half bandwidth
producttime halfbandwith is a real-valued scalar determining the frequency concentration of the
Slepian sequences in dps_seq. dps_seq is a NxK matrix of Slepian sequences where N is the length
of the sequences. Llambda is a 1xK vector containing the frequency concentration ratios of the
Slepian sequences in dps_seq.

If the database dpss.mat exists, subsequent calls to dpsssave append the Slepian sequences to the
existing file. If the sequences are already in the existing file, dpsssave overwrites the old values and
issues a warning.

status = dpsssave(time halfbandwith,dps seq, lambda) returns a 0 if the database
operation was successful or a 1 if unsuccessful.

Examples

Create a Database of Slepian Sequences

Construct the first four discrete prolate spheroidal sequences of length 512. Specify a time half
bandwidth product of 2.5. Use them to create a database of Slepian sequences, dpss.mat, in the
current working directory. The output variable, status, is 0 if there is success.

seq_length = 512;

time halfbandwidth = 2.5;

num_seq = 4;

[dps_seq,lambda] = dpss(seq_length,time halfbandwidth);
status = dpsssave(time_ halfbandwidth,dps seq, lambda)

status = 0

More About

Discrete Prolate Spheroidal Sequences

The discrete prolate spheroidal or Slepian sequences derive from the following time-frequency
concentration problem. For all finite-energy sequences x[n] index limited to some set [N1, N1 + Ny],

which sequence maximizes the following ratio:
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where F; is the sample rate and |W| < Fs/2. Accordingly, this ratio determines which index-limited
sequence has the largest proportion of its energy in the band [-W,W]. For index-limited sequences,
the ratio must satisfy the inequality 0 < A < 1. The sequence maximizing the ratio is the first discrete
prolate spheroidal or Slepian sequence. The second Slepian sequence maximizes the ratio and is
orthogonal to the first Slepian sequence. The third Slepian sequence maximizes the ratio of integrals
and is orthogonal to both the first and second Slepian sequences. Continuing in this way, the Slepian
sequences form an orthogonal set of bandlimited sequences.

Time Half Bandwidth Product

The time half bandwidth product is NW where N is the length of the sequence and [-W,W] is the
effective bandwidth of the sequence. In constructing Slepian sequences, you choose the desired
sequence length and bandwidth 2W. Both the sequence length and bandwidth affect how many
Slepian sequences have concentration ratios near one. As a rule, there are 2NW - 1 Slepian
sequences with energy concentration ratios approximately equal to one. Beyond 2NW - 1 Slepian
sequences, the concentration ratios begin to approach zero. Common choices for the time half
bandwidth product are: 2.5, 3, 3.5, and 4.

You can specify the bandwidth of the Slepian sequences in Hz by defining the time half bandwidth
product as NW/F,, where F; is the sample rate.

References

Percival, D. B., and A. T. Walden. Spectral Analysis for Physical Applications. Cambridge, UK:
Cambridge University Press, 1993.

See Also
dpss | dpssclear | dpssdir | dpssload

Introduced before R2006a
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dspdata

DSP data parameter information

Syntax

Hs = dspdata.dataobj(inputl,...)

Description

Note The use of dspdata.dataobj is not recommended. Use the appropriate function interface

instead.

Hs = dspdata.dataobj(inputl,...) returns a dspdata object Hs of type dataobj. This object
contains all the parameter information needed for the specified type of dataobj. Each dataobj
takes one or more inputs, which are described on the individual reference pages. If you do not specify
any input values, the returned object has default property values appropriate for the particular

dataobj type.

Note You must use a dataobj with dspdata.

Data Objects

A data object, dataobj, for dspdata specifies the type of data stored in the object. Available
dataobj types for dspdata are shown below.

dspdata.dataobj

Description

Corresponding Functions

dspdata.msspectrum

Mean-square spectrum data (power)

periodogram

pwelch

dspdata.psd

Power spectral density data (power/
frequency)

pburg

pcov
periodogram
pmcov

pmtm

pwelch
pyulear

dspdata.pseudospec
trum

Pseudospectrum data (power)

peig

pmusic




dspdata

For more information on each dataobj type, use the syntax help dspdata.dataobj at the
MATLAB prompt or refer to its reference page.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can apply these
methods directly on the variable you assigned to your dspdata object.

Method

Description

avgpower

This method applies only to dspdata. psd objects.

avgpower (Hs) computes the average power of a signal, Hs, in a
given frequency band. The technique uses a rectangle
approximation of the integral of the signal's power spectral density
(PSD). If the signal is a matrix, the computation is done on each
column. The average power is the total signal power. The
SpectrumType property determines whether the total average
power is contained in the one-sided or the two-sided spectrum. For
a one-sided spectrum, the range is [0,pi] if the number of
frequency points is even and [0,pi) if it is odd. For a two-sided
spectrum, the range is [0,2pi).

avgpower (Hs, freqrange) specifies the frequency range over
which to calculate the average power. freqrange is a two-element
vector containing the lower and upper bounds of the frequency
range. If a frequency value does not match exactly the frequency in
Hs, the next closest value is used. The first frequency value in
freqrange is included in the calculation and the second value is
excluded.

centerdc

centerdc(Hs) or centerdc(Hs, true) shifts the data and
frequency values so that the DC component is at the center of the
spectrum. If the SpectrumType property is 'onesided’, it is
changed to 'twosided' and then the DC component is centered.

centerdc(Hs, 'false') shifts the data and frequency values so
that the DC component is at the left edge of the spectrum.
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Method

Description

findpeaks

findpeaks (Hs) finds local maxima or peaks. If no peaks are
found, findpeaks returns an empty vector.

[pks,frqs] = findpeaks (x) returns the peaks’ values, pks,
and the frequencies, frqs, at which they occur.

findpeaks(x, 'minpeakheight',mph) returns only peaks
greater than the minimum peak height mph, where mph is a real
scalar. The default is -Inf.

findpeaks(x, 'minpeakdistance',mpd) returns only peaks
separated by the minimum frequency units distance mpd, which is
a positive integer. Setting the minimum peak distance ignores
smaller peaks that may occur close to larger local peaks. The
default is 1.

findpeaks(x, 'threshold', th) returns only peaks greater
than their neighbors by at least the threshold, th, which is a real,
scalar value greater than or equal to 0. The default is 0.

findpeaks(x, 'npeaks',np) returns a maximum of np number
of peaks. When np peaks are found, the search stops. The default
is to return all peaks.

findpeaks(x, 'sortstr', str) specifies the sorting order,
where stris 'ascend', 'descend’, or 'none'. When stris set
to 'ascend', the peaks are sorted from smallest to largest. When
strissetto 'descend' the peaks are sorted in descending order.
When stris set to 'none', the peaks are returned in the order in
which they occur.

halfrange

halfrange(Hs) converts the spectrum of Hs to a spectrum
calculated over half the Nyquist interval. All associated properties
affected by the new frequency range are adjusted automatically.
This method is used for dspdata.pseudospectrum objects.

The spectrum is assumed to be from a real signal. That is,
halfrange uses half the data points regardless of whether the
data is symmetric.

normalizefreq

normalizefreq(Hs) ornormalizefreq(Hs, true) normalizes
the frequency specifications in the Hs object to Fs so the
frequencies are between 0 and 1. It also sets the
NormalizedFrequency property to true.

normalizefreq(Hs, false) converts the frequencies to linear
frequencies.

normalizefreq(Hs, false,Fs) sets a new sampling frequency,
Fs. This can be used only with false.
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Method

Description

onesided

onesided(Hs) converts the spectrum of Hs to a spectrum
calculated over half the Nyquist interval and containing the total
signal power. All associated properties affected by the new
frequency range are adjusted automatically. This method is used
for dspdata.psd and dspdata.msspectrum objects.

The spectrum is assumed to be from a real signal. That is,
onesided uses half the data points regardless of whether the data
is symmetric.

plot

Displays the data graphically in the current figure window.

For a dspdata.psd object, it displays the power spectral density
in dB/Hz.

For a dspdata.msspectrum object, it displays the mean-square
in dB.

For a dspdata.pseudospectrum object, it displays the
pseudospectrum in dB.

sfdr

This method applies only to dspdata.msspectrum objects.

sfdr(Hs) computes the spurious-free dynamic range (SFDR) in
dB of a mean square spectrum object Hs. SFDR is the usable range
before spurious noise interferes with the signal.

[sfd,spur,frgq]l = sfdr(Hs) returns the magnitude of the
highest spur and the frequency frq at which it occurs.

sfdr(Hs, 'minspurlevel',msl) ignores spurs below the
minimum spur level ms, which is a real scalar in dB.

sfdr(Hs, 'minspurdistance',msd) includes spurs only if they
are separated by at least the minimum spur distance msd, which is
a real, positive scalar in frequency units.

twosided

twosided (Hs) converts the Hs spectrum to a spectrum calculated
over the whole Nyquist interval. All associated properties affected
by the new frequency range are adjusted automatically. This
method is used for dspdata.psd and dspdata.msspectrum
objects.

If your data is nonuniformly sampled, converting from onesided
to twosided may produce incorrect results.

wholerange

wholerange(Hs) converts the Hs spectrum to a spectrum
calculated over the whole Nyquist interval. All associated
properties affected by the new frequency range are adjusted
automatically. This method is used for dspdata.pseudospectrum
objects.

If your data is nonuniformly sampled, converting from half to
wholerange may produce incorrect results.
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For more information on each method, use the syntax help dspdata/method at the MATLAB
prompt.

Plotting a dspdata Object
The plot method displays the dspdata object spectrum in a separate figure window.
Modifying a dspdata Object

After you create a dspdata object, you can use any of the methods in the table above to modify the
object properties. For example, to change an object, Hs, from two-sided to one-sided, use
onesided(Hs).

Examples

See the dspdata.msspectrum, dspdata.psd, and dspdata.pseudospectrum reference pages for
specific examples.

See Also
pburg | pcov | peig | periodogram | pmcov | pmtm | pmusic | pwelch | pyulear

Introduced before R2006a
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dspdata.msspectrum

Mean-square (power) spectrum

Syntax

Hmss = dspdata.msspectrum(Data)

Hmss = dspdata.msspectrum(Data,Frequencies)

Hmss = dspdata.msspectrum(...,'Fs', Fs)

Hmss = dspdata.msspectrum(..., 'SpectrumType',SpectrumType)
Hmss = dspdata.msspectrum(...,'CenterDC', flag)
Description

Note The use of dspdata.msspectrum is not recommended. Use periodogram or pwelch instead.

The mean-squared spectrum (MSS) is intended for discrete spectra. Unlike the power spectral
density (PSD), the peaks in the MSS reflect the power in the signal at a given frequency. The MSS of
a signal is the Fourier transform of that signal's autocorrelation.

Hmss = dspdata.msspectrum(Data) uses the mean-square (power) spectrum data contained in
Data, which can be in the form of a vector or a matrix, where each column is a separate set of data.
Default values for other properties of the object are as follows:

Property Default Value Description
Name 'Mean-square Read-only character vector
Spectrum'
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Property

Default Value

Description

Frequencies

[]
type double

Vector of frequencies at which the spectrum is
evaluated. The range of this vector depends on
the SpectrumType value. For a one-sided
spectrum, the default range is [0, ) or [0, Fs/2)
for odd length, and [0, ] or [0, Fs/2] for even
length, if Fs is specified. For a two-sided
spectrum, it is [0, 2m) or [0, Fs).

The length of the Frequencies vector must
match the length of the columns of Data.

If you do not specify Frequencies, a default
vector is created. If one-sided is selected, then
the whole number of FFT points (nFFT) for this
vector is assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to pi (or
Fs/2, if Fs is specified). If the last point is closer
to pi (or Fs/2) than it is to the previous point,
nFFT is assumed to be even. If it is closer to the
previous point, nFFT is assumed to be odd.

Fs

'Normalized'

Sampling frequency, which is 'Normalized"' if
NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults to
1 Hz.

SpectrumType

'Onesided’

Nyquist interval over which the spectral density
is calculated. Valid values are 'Onesided' and
'Twosided'. See the onesided and twosided
methods in dspdata for information on changing
this property.

The interval for Onesided is [0 ) or [0 m]
depending on the number of FFT points, and for
Twosided the interval is [0 2m).

NormalizedFrequency

true

Whether the frequency is normalized (true) or
not (false). This property is set automatically at
construction time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See the
normalizefreq method in dspdata for
information on changing this property.
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Hmss = dspdata.msspectrum(Data,Frequencies) uses the mean-square spectrum data

contained in Data and Frequencies vectors.

Hmss = dspdata.msspectrum(...,'Fs',Fs) uses the sampling frequency Fs. Specifying Fs
uses a default set of linear frequencies (in Hz) based on Fs and sets NormalizedFrequency to

false.
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Hmss = dspdata.msspectrum(...,'SpectrumType', SpectrumType) uses SpectrumType to
specify the interval over which the mean-square spectrum was calculated. For data that ranges from
[0 mm) or [0 m], set the SpectrumType to onesided; for data that ranges from [0 2m), set the
SpectrumType to twosided.

Hmss = dspdata.msspectrum(...,'CenterDC', flag) uses the value of flag to indicate
whether the zero-frequency (DC) component is centered. If flag is true, it indicates that the DC
component is in the center of the two-sided spectrum. Set the flag to false if the DC component is
on the left edge of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object without having to
specify the parameters again. You can apply a method directly on the variable you assigned to your
dspdata.msspectrum object. You can use the following methods with a dspdata.msspectrum
object.

* centerdc

* normalizefreq
* onesided

+ plot

+ sfdr

* twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter to true, use

Hmss = normalizefreq(Hs)

For detailed information on using the methods and plotting the spectrum, see the dspdata reference
page.

Examples

Mean-Square Spectrum of Sinusoids

Create a signal consisting of two sinusoids in additive noise.
= 32e3;

0:1/Fs:1-1/Fs;

Fs
t
X Cos(2*pi*t*1.24e3)+cos(2*pi*t*10e3)+randn(size(t));

Compute the one-sided PSD estimate of the signal. Use the result to construct a dspdata object. Plot
the mean-square spectrum.

P = periodogram(x,[],[],Fs);
Hmss = dspdata.msspectrum(P, 'Fs',Fs, 'spectrumtype’', 'onesided');

plot(Hmss)
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Mean-Square Spectrum

Fower (dB)
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See Also

periodogram | pwelch

Introduced before R2006a

16



dspdata.psd

dspdata.psd

Power spectral density

Syntax

Hpsd = dspdata.psd(Data)

Hpsd = dspdata. psd(Data Frequencies)

Hpsd = dspdata.psd(...,'Fs',Fs)

Hpsd = dspdata.psd(. ,'SpectrumType',SpectrumType)
Hpsd = dspdata.psd(...,'CenterDC', flag)
Description

Note The use of dspdata.psd is not recommended. Use pburg, pcov, periodogram, pmcov, pmtm,
pwelch, or pyulear instead.

The power spectral density (PSD) is intended for continuous spectra. The integral of the PSD over a
given frequency band computes the average power in the signal over that frequency band. In contrast
to the mean-squared spectrum, the peaks in this spectra do not reflect the power at a given
frequency. See the avgpower method of dspdata for more information.

A one-sided PSD contains the total power of the signal in the frequency interval from DC to half of the
Nyquist rate. A two-sided PSD contains the total power in the frequency interval from DC to the
Nyquist rate.

Hpsd = dspdata.psd(Data) uses the power spectral density data contained in Data, which can be
in the form of a vector or a matrix, where each column is a separate set of data. Default values for
other properties of the object are shown below:

Property Default Value Description
Name '"Power Spectral Read-only character vector
Density'
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Property

Default Value

Description

Frequencies []

type double

Vector of frequencies at which the power spectral
density is evaluated. The range of this vector
depends on the SpectrumType value. For one-
sided, the default range is [0, o) or [0, Fs/2) for
odd length, and [0, m] or [0, Fs/2] for even length,
if Fs is specified. For two-sided, it is [0, 2pi) or [0,
Fs).

If you do not specify Frequencies, a default
vector is created. If one-sided is selected, then the
whole number of FFT points (nFFT) for this vector
is assumed to be even.

If onesided is selected and you specify
Frequencies, the last frequency point is
compared to the next-to-last point and to m (or
Fs/2, if Fs is specified). If the last point is closer
to  (or Fs/2) than it is to the previous point, nFFT
is assumed to be even. If it is closer to the
previous point, nFFT is assumed to be odd.

The length of the Frequencies vector must
match the length of the columns of Data.

Fs

'Normalized'

Sampling frequency, which is 'Normalized"' if
NormalizedFrequency is true. If
NormalizedFrequency is false Fs defaults to
1.

SpectrumType 'Onesided'’

Nyquist interval over which the power spectral
density is calculated. Valid values are
'Onesided' and 'Twosided'. A one-sided PSD
contains the total signal power in half the Nyquist
interval. See the onesided and twosided
methods in dspdata for information on changing
this property.

The range for half the Nyquist interval is [0 pi) or
[0 pi] depending on the number of FFT points. For
the whole Nyquist interval, the range is [0 2pi).

NormalizedFrequency true

Whether the frequency is normalized (true) or
not (false). This property is set automatically at
construction time based on Fs. If Fs is specified,
NormalizedFrequency is set to false. See the
normalizefreq method in dspdata for
information on changing this property.
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Hpsd = dspdata.psd(Data, Frequencies) uses the power spectral density estimation data

contained in Data and Frequencies vectors.

Hpsd = dspdata.psd(...,"'Fs', Fs) uses the sampling frequency Fs. Specifying Fs uses a
default set of linear frequencies (in Hz) based on Fs and sets NormalizedFrequency to false.




dspdata.psd

Hpsd = dspdata.psd(...,'SpectrumType', SpectrumType) specifies the interval over which
the power spectral density is calculated. For data that ranges from [0 1) or [0 m], set the
SpectrumType to onesided; for data that ranges from [0 2m), set the SpectrumType to twosided.

Hpsd = dspdata.psd(..., 'CenterDC', flag) uses the value of flag to indicate whether the
zero-frequency (DC) component is centered. If flag is true, it indicates that the DC component is in
the center of the two-sided spectrum. Set the flag to false if the DC component is on the left edge
of the spectrum.

Methods

Methods provide ways of performing functions directly on your dspdata object. You can apply a
method directly on the variable you assigned to your dspdata.psd object. You can use the following
methods with a dspdata. psd object.

* avgpower

* centerdc

* normalizefreq

* onesided

+ plot

* twosided

For example, to normalize the frequency and set the NormalizedFrequency parameter to true, use
Hpsd = normalizefreq(Hpsd)
For detailed information on using the methods and plotting the spectrum, see the dspdata reference

page.

Examples

Resolve Signal Components

Estimate the one-sided power spectral density of a noisy sinusoidal signal with two frequency
components.

Fs = 32e3;

t =0:1/Fs:2.96;

X = cos(2*pi*t*1.24e3)+ cos(2*pi*t*10e3)+ randn(size(t));
nfft = 2”nextpow2(length(x));

Pxx = abs(fft(x,nfft)).”2/length(x)/Fs;

Store the spectrum in a PSD data object and plot the result.

Hpsd = dspdata.psd(Pxx(1l:length(Pxx)/2),'Fs',Fs);
plot(Hpsd)
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Power Spectral Density

Fowerffrequency (dB/Hz)

-90

—1":”} i i i i i i
0 2 4 G 8 10 12

Frequency (kHz)

Create a two-sided spectrum and plot it.

Hpsd = dspdata.psd(Pxx, 'Fs',Fs, 'SpectrumType', 'twosided');
plot(Hpsd)
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Power Spectral Density

Fowerffrequency (dB/Hz)
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See Also

pburg | pcov | periodogram | pmcov | pmtm | pwelch | pyulear

Introduced before R2006a
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dspdata.pseudospectrum

Pseudospectrum dspdata object

Syntax

Hps = dspdata.pseudospectrum(Data)

Hps = dspdata.pseudospectrum(Data, Frequencies)

Hps = dspdata.pseudospectrum(...,'Fs',Fs)

Hps = dspdata.pseudospectrum(..., 'SpectrumRange',SpectrumRange)
Hps = dspdata.pseudospectrum(..., 'CenterDC', flag)

Description

Note The use of dspdata.pseudospectrumis not recommended. Use peig or pmusic instead.

A pseudospectrum is an indicator of the presence of sinusoidal components in a signal.

Hps = dspdata.pseudospectrum(Data) uses the pseudospectrum data contained in Data, which
can be in the form of a vector or a matrix, where each column is a separate set of data. Default values
for other properties of the object are:

Property Default Value Description
Name 'Pseudospectrum’ Read-only character vector
Frequencies [] Vector of frequencies at which the power spectral
density is evaluated. The range of this vector
type double depends on the Spect rumRange value. For half, the

default range is [0, ) or [0, Fs/2) for odd length,
and [0, ] or [0, Fs/2] for even length, if Fs is
specified. For whole, it is [0, 2m) or [0, Fs).

If you do not specify Frequencies, a default vector
is created. If half the Nyquist range is selected, then
the whole number of FFT points (nFFT) for this
vector is assumed to be even.

If half the Nyquist range is selected and you
specify Frequencies, the last frequency point is
compared to the next-to-last point and to m (or Fs/2,
if Fs is specified). If the last point is closer to m (or
Fs/2) than it is to the previous point, nFFT is
assumed to be even. If it is closer to the previous
point, nFFT is assumed to be odd.

The length of the Frequencies vector must match
t